

Course	Bachelor of Science (B.Sc.) Semester - 1
Type of Course	Core Courses
Prerequisite	
Course Objective	 To develop basic concepts of microbiology and the practical skills and techniques required in microbiological analysis. To study about the basic structure and functional properties of microorganism. To provide a variety of practical laboratory experiences where students can apply their theoretical knowledge to practical situations. To study about the application of organism in our daily life. To get the knowledge of disease in eukaryotic and prokaryotic cells

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
	Tutorial	Tutorial Lab	Credit	Theory Marks		Practical Marks		Total
Lecture				External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	50	-	150

Course Content		T - Teaching Hours W -	Weig	htage			
Sr.	Topics		т	w			
1	History of micr	obiology and introduction to the microbial world.	12	20			
	Germ theory of disease, Development of various microbiological techniques and golden era of microbiology. Contributio Antonyvon Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister, Alexander Fleming, Martinus W. Beijerinck, Sergei N Winogradsky, Selman A. Waksman, Paul Ehrlich, Elie Metchnikoff and EdwardJenner.						
2	Physiochemica	l and biological characteristics of microorganisms	12	20			
	Physiochemical and biological characteristics of microorganisms (including viruses); Baltimore classification. Binomial Nomenclature, Whittaker's five kingdom and Carl Woese's three kingdom classification systems and their utility. Gene characteristics of Cellular microorganisms, wall-less forms - MLO (mycoplasma and spheroplasts) with emphasis on distribution and occurrence, morphology, mode of reproduction and economic importance.						
3	General conce	ot of phytoplanktons and zooplanktons.	12	20			
	economic impo	ot of phytoplanktons and zooplanktons. General characteristics, structure, mode of reproduction and ortance of actinomycetes with special reference to its application in medicine and industry. General occurrence, structure, reproduction and importance of protozoa.					
4	Methods of stu	dying microorganism; Staining techniques	12	20			
	Methods of studying microorganism; Staining techniques: simple staining, Gram staining, negative staining and acid-fast staining. Sterilization techniques (physical & chemical sterilization). Culture media & conditions for microbial growth. Pure culture isolation: Streaking, serial dilution and plating methods; cultivation,maintenance and preservation of pure cultures.						
5	Beneficial and	harmful microbes and their role in daily life.	12	20			
	Beneficial and H	narmful microbes and their role in daily life. Concept of disease in plant and animal caused by microor	rganis	sm.			
		Total	60	100			
]			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level	Remembrance	Understanding	Application				

Weightage	20	60	20
-----------	----	----	----

Cour	e Outcomes						
At the	At the end of this course, students will be able to:						
CO1	Develop a good knowledge of the development of the discipline of Microbiology and the contributions made by prominent scientists in this field.						
CO2	Have good understanding of the characteristics of different types of microorganisms, methods to organize/classify these into and basic tools to study these in the laboratory.						
CO3	Explain the useful and harmful activities of the microorganisms.						
CO4	Perform basic experiments to grow and study microorganisms in the laboratory						
CO5	Differentiate the different types of organism and their application in daily life						

Fundamentals of Microbiology
By Alcomo, I.E. VI Edition, Jones and Bartlett Publishers. Sudbury. Massachusetts. Pub. Year 2001
General Microbiology
By Pelzar, M. J., Chan, E. C. S., & Noel, R. K., Pub. Year 1986
Brock biology of microorganisms.
By Brock, T. D., Madigan, M. T., Martinko, J. M., & Parker, J. Prentice-Hall, Pub. Year 2003
A Text Book of Microbiology (TextBook)
By P. Chakraborthy
Agricultural Microbiology (TextBook)
By Rangaswamy, G. "Bagyaraj 2nd, Pub. Year 1993
Burrows Textbook of Microbiology (TextBook)
By Bob A freeman W.B. Saunders 21, Pub. Year 1979
Fundamentals of Microbiology (TextBook)
By Edward Cartwright
Essentials of Practical Microbiology (TextBook)
By Purba Sankar Sastry, Sandhya Bhat K, Pub. Year 2018
Laboratory Manual of Agricultural Microbiology (TextBook)
By Dr. Ravindra Soni and Dr. Deep Chandra Suyal Scripown publication, Pub. Year 2021
Laboratory Practice of Microbiology (TextBook)
By Nirmal Majumdar Agrotech Press, Pub. Year 2012

List of Practical

1.	Microbiology Good Laboratory Practices and Bio-safety
2.	To study the principle and applications of important instruments
3.	Preparation of culture media (liquid & solid) for bacterial cultivation.
4.	Handling and care of laboratory equipment - autoclave, hot air oven, incubator, and laminar airflow.
5.	Sterilization of media using autoclave and assessment of sterility.
6.	Sterilization of glassware using hot air oven.
7.	Sterilization of heat-sensitive material by membrane filtration.
8.	Demonstration of the presence of micro flora in the environment by exposing nutrient agar plates to air.

9.	Observation of microorganisms - bacteria, cyanobacteria protozoa, fungi, yeasts, and algae from natural habitats.
10.	Study of common fungi, algae and protozoan using temporary / permanent mounts.

Useful Links

https://archive.nptel.ac.in/courses/102/103/102103015/ https://www.coursera.org/learn/bacterial-infections

Course	Bachelor of Science (B.Sc.) Semester - 1
Type of Course	Core Courses
Prerequisite	
Course Objective	 To understand the basic concept of bacterial cell To know the knowledge of Gram Positive and Gram Negative bacterial cell To illustrate the different type of culture media for bacterial growth To explain about the classification and taxonomy of bacteria. To categorize the different type of bacterial cell on the basis of phylogenetic relationship.

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme		
	e Tutorial				Theory Marks		Practical Marks		Total
Lecture		Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks	
4	-	2	5	70	30	50	-	150	

Course Content		T - Teaching Hours W -	Weig	shtage				
Sr.	Topics		т	w				
1	Introduction to	o Microbiology	12	20				
	Cell size, shape and arrangement, capsule, flagella, fimbriae and pili. Cel wall: Composition and detailed structure of Gram- positive and Gram-negative cell walls, archaebacterial cell wall, Gram and acid-faststaining mechanisms, lipopolysaccharide (LPS), sphaeroplasts,protoplasts, and L-forms. Effect of antibiotics and enzymes on the cellwall. Cell Membrane: Structure, function and chemical composition of bacterial and archaeal cellmembranes. Cytoplasm: Ribosomes, mesosomes, inclusion bodies,nucleoid. Endospore: Structure, formation, stages of sporulation.							
2	Gram negative and Gram positive bacteria		12	20				
	Gram negative and Gram positive bacteria: characteristics and examples. Study of typical eubacteria (Bacillus, Clostric Staphylococcus, Streptococcus, Corynebacterium, Mycobacterium,Escherichia, Salmonella, Shigella, Vibrio, Helicobacter,Meningococcus, Spirochetes, Rickettsia, Mycoplasma and Chlamydia.							
3	Nutritional req	uirements in bacteria and nutritional categories. Culture media	12	20				
	Nutritional requirements in bacteria and nutritional categories. Culture media: components of media, natural and synth media, chemically define media, complex media, selective, differential, enriched and enrichment media. Physical method microbial control: heat, low temperature, high pressure, filtration, desiccation, osmotic pressure, radiation. Chemical methods of microbial control: disinfectants, types and mode of action. Asexual methods of reproduction, logarithmic representation of and bacterial populations, phases of growth, calculation of generation time and specific growth rate.							
4	Aim and princi	ples of classification, systematics and taxonomy, concept of species, taxa, strain	12	20				
	Aim and principles of classification, systematics and taxonomy, concept of species, taxa, strain;conventional, molecular and recent approaches to polyphasic bacterial taxonomy, evolutionary chronometers, rRNA oligonucleotide sequencing and its importance Differences between eubacteria and archaebacteria.							
5	General charac	teristics, phylogenetic overview of archaebacteria.	12	20				
	General characteristics, phylogenetic overview of archaebacteria. Introduction to Nanoarchaeota (<i>Nanoarchaeum</i>), Crenarchaeota(<i>Sulfolobus, Thermoproteus</i>) and Euryarchaeota [Methanogens(<i>Methanobacterium, Methanocaldococcu</i> thermophiles(<i>Thermococcus, Pyrococcus, Thermoplasma</i>), and Halophiles(<i>Halobacterium, Halococcus</i>).							
	Total 60 3							

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy

00	•	0	•	
Level	Remembrance	Understanding	Application	Analyze
Weightage	25	40	25	10

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cour	Course Outcomes				
At the	At the end of this course, students will be able to:				
CO1	CO1 Explain the characteristics of internal and external structure of bacterial cells.				
CO2	Differentiate a large number of common bacteria by their salient characteristics and classify bacteria into groups.				
CO3	3 Use the knowledge of the nutritional requirements of bacteria for growth.				
CO4	Use the knowledge of nutritional requirements of bacteria for growth.				
CO5	Explain the phylogenetic overview of bacterial cell.				

Reference Books

1.	Fundamentals of Microbiology By Edward Cartwright		
2.	Fundamentals of Microbiology By Alcomo, I.E. VI Edition, Jones and Bartlett Publishers. Sudbury. Massachusetts,, Pub. Year 2001		
3.	A Text Book of Microbiology (TextBook) By P. Chakraborthy		
4.	Brock biology of microorganisms. (TextBook) By Brock, T. D., Madigan, M. T., Martinko, J. M., & Parker, J. Prentice-Hall, Pub. Year 2003		
5.	Burrows Textbook of Microbiology (TextBook) By Bob A freeman W.B. Saunders 21, Pub. Year 1979		
6.	Prescott, Harley and Klein's Microbiology. (TextBook) By Willey JM, Sherwood LM, and Woolverton CJ. (2008). McGraw Hill Higher Education 7th edition		
7.	Essentials of Practical Microbiology (TextBook) By Purba Sankar Sastry, Sandhya Bhat K, Pub. Year 2018		
8.	Experimental Microbiology (TextBook) By Rakesh J Patel		
List o	Practical		
1.	To study the preparation of different media: synthetic media, complex media- Nutrient agar, McConkey agar, EMB agar.		
2.	To perform the simple staining		
3.	To perform the negative staining		
4.	To perform the gram staining		
5.	To study the acid-fast staining by using the permanent slide.		
6.	To perform the capsule staining		
7.	To perform endospore staining.		
8.	To perform the isolation of pure cultures of bacteria by streaking method.		
9.	To study the preservation of bacterial cultures by various techniques.		

10.	To perform the estimation of CFU count by spread plate method/pour plate method.

11. To perform the motility by hanging drop method.

Course	Bachelor of Science (B.Sc.) Semester - 1
Type of Course	Discipline Specific Elective Courses
Prerequisite	
Course Objective 1) To learn and understand the microbial diversity in the living world. 2) To know the various physical and chemical growth requirements of bacteria and get equipped various methods of bacterial growth measurement. 3) To understand, learn and gain skills of isolation, culturing and maintenance of pure culture 4) To know various Culture media and their applications. 5) To acquaint students with basic concepts of microbial diversity and how the microbe concept end	

Teaching Scheme (Contact Hours)				Exa	mination Sch	eme		
				Theory	/ Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Total Marks
4	-	2	5	70	30	50	-	150

Cour	Course Content T - Teaching Hours W - Weight			shtage
Sr.	Topics		т	w
1	Introduction to	microbial world	12	20
	general structu	l and biological characteristics; Characteristics of Acellular microorganisms (Viruses); Baltimore classi re with special reference to viroid's and prions. Binomial Nomenclature, Whittaker's five kingdom a kingdom classification systems and their utility. Difference between prokaryotic and eukaryotic s.		
2	General charac	teristics of Cellular microorganisms	12	20
		pacteria,eubacteria, wall-less forms - MLO (mycoplasma and spheroplasts) with emphasis on distribu prphology, mode of reproduction and economic importance. Structure, reproduction and economic Mycoplasma.	tion	and
3	General concer	ot of Phytoplankton's and Zooplanktons	12	20
		Occurrence, thallus organization and classification of Algae. Cyanobacteria -Occurrence, thallus orga sure, reproduction and economic importance. Applications of algae in agriculture, industry,Environm		
4	Historical deve	lopments in the field of Mycology	12	20
	nutritional requ	icant Contributions of eminent mycologists. General characteristics of fungi including habitat, distrib uirements, fungal cell ultrastructure, thallus organization and aggregation, mode of reproduction an ortance of fungi with examples in agriculture, environment, Industry, medicine and food.		,
5	Importance of	Actinomycetes and Protozoa	12	20
	to its applicatio	teristics, structure, mode of reproduction and economic importance of Actinomycetes with special r on in Medicine and industry. General characteristics, occurrence, classification structure, reproductio ortance of Protozoa.		
		Total	60	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy

Level	Understanding	Application	Analyze
Weightage	60	20	20

Cour	se Outcomes			
At the	At the end of this course, students will be able to:			
CO1	Appreciate the	significance of microbes in shaping and maintaining our planets ecosystem.		
CO2	Understanding	of diverse group of cellular microorganisms including bacteria, archaea, fungi and protozoa.		
CO3	Differentiate bo roles.	etween phytoplankton and zooplankton based on their biological characteristics, life cycles and ecological		
CO4	Impact of micro	bes on earth atmosphere, health and technology development.		
CO5		e characteristics, structure, identification, reproduction, and classifications to comprehend the various microbial taxonomy.		

1.	General Microbiology (TextBook) By Singh,R.P KalyaniPublishers, NewDelhi (2007)
2.	Experiments in Microbiology,Plant pathology and Biotechnology By Aneja, K.R NewAge International publishers. Fourth edition
3.	Burrows Textbook of Microbiology (TextBook) By Bob A freeman W.B. Saunders 21, Pub. Year 1979
4.	Fundementals of Microbiology (TextBook) By D.E. Alcamo, Jones and Bartiett, Boston Jones & Bartlett
5.	Laboratory Manual of Agricultural Microbiology (TextBook) By Dr. Ravindra Soni and Dr. Deep Chandra Suyal Scripown publication, Pub. Year 2021
6.	Experimental Microbiology (TextBook) By Rakesh J Patel
7.	Laboratory Practice of Microbiology (TextBook) By Nirmal Majumdar Agrotech Press, Pub. Year 2012

List of Practical

1.	Microbiology Good Laboratory Practices and Bio-safety
2.	To study the principle and applications of important instruments
3.	Preparation of culture media (liquid & solid) for bacterial cultivation
4.	Handling and care of laboratory equipment - autoclave, hot air oven, incubator, and laminar airflow.
5.	Sterilization of media using autoclave and assessment of sterility.
6.	Sterilization of glassware using hot air oven
7.	Sterilization of glassware
8.	Sterilization of heat-sensitive material.
9.	Demonstration of the presence of microflora
10.	Observation of microorganisms.
11.	Study of common microorganisms.

Useful Links

1)https://archive.nptel.ac.in/courses/102/103/102103015/ 2)https://www.slideshare.net/phylogenomics/bis2c-lecture-9-microbial-diversity

3)https://www.vedantu.com/biology/actinomycete

Course	Bachelor of Science (B.Sc.) Semester -	- 1
Type of Course	Ability Enhancement Compulsory Courses	
Prerequisite		
Course Objective	 1 To make aware of the issue and understand the reasons behind environmental degradation. 2 To encourage for seek out knowledge about the environment and all of its components. 3 To develop a sense of responsibility and perspective necessary for progressive actions towards the environment. 4 To impart critical skills to solve issues related to the environment. 5 To develop the ability to draw accurate conclusions and unbiased inferences. 	

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory	/ Marks	Practica	l Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	-	4	70	30	-	-	100

Course Content T - Teaching Hou		T - Teaching Hours W -	Weig	shtage
Sr.	Topics		Т	w
1	Introduction to) Environment science	15	25
	The multidisciplinary nature of environmental studies. Environmental Science – definition, scope & importance, Evolut the universe, origin of the earth; solar system; atmosphere of the primitive earth, abiotic component of environment, Environmental balance, balance in O2 and CO2 in air; thermal balance; balance in predator and prey population.			
2	Ecology		15	25
	and structure of	ranches, scope of Ecology and its relation to other divisions of sciences; autecology and synecology, o of ecosystem, functions of ecosystem, Types of Ecosystems, Concept of habitat; Significance of ecolo ological adaptation in plants and animals.		
3	Ecosystem and	lits concept	15	25
	effluent etc. Th	cept and scope of environmental chemistry, chemical toxicology, hazardous chemicals, carcinogens, ne natural cycles of the environment, Ozone depletion –causes and effects; Global warming – major ses, causes and effects; Acid rain –causes and effects, Acid – base reactions in water.	occu	pier,
4	Biogeochemica	al cycles and Environmental Pollution	15	25
	Biogeochemical cycles, Carbon cycle, Nitrogen cycle, Oxygen cycle, Water cycle Environmental Pollution, Types of Environmental Pollution, Water Pollution, Air Pollution, Land and Noise Pollution Current Issues in environment science		ences	;
		Total	60	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy				
Level	Remembrance	Understanding	Application	
Weightage	20	60	20	

Course Outcomes				
At the	end of this cou	rse, students will be able to:		
CO1	1 Get knowledge about various environmental factors and components.			
CO2	Acknowledge c solving.	oncepts and methods from ecological and physical sciences and their application in environmental problem		
CO3	Understanding of issues related to environment and their impact on the human life.			
CO4	Reflect critically interconnected	y about their roles and identities as citizens, consumers and environmental actors in a complex, world.		
CO5		y concepts from economic, political, and social analysis as they pertain to the design and evaluation of policies and institutions.		

1.	Textbook of Environmental (TextBook) By Erach Bharucha Universities Press (India) Private Ltd, Hyderabad. Second edition, Pub. Year 2013	
2.		l Sciences (TextBook) :kin & Edward A Keller John Wiley & Sons.
3.		I Science: Toward A Sustainable Future Bourse and Richard T. Wright.
4.	•	wironmental Science unningham and Mary Ann Cunningham
5.		I Science: Systems and Solutions AcKinney, Robert M. Schoch, Logan Yonavjack and Grant A. Mincy

Useful Links

1 https://onlinecourses.nptel.ac.in/noc23_hs155/preview

2 https://onlinecourses.swayam2.ac.in/cec20_ge24/preview

3 www.nsta.org

4 www.earthforce.org

Course	Bachelor of Science (B.Sc.) Semester - 1
Type of Course	Ability Enhancement Compulsory Courses
Prerequisite	
Course Objective	 To apply the soft skills in theoretical and practical ways and also to develop the effective communication skills among students Learning about the essential factors for personality development and bringing them into practice. Apply and demonstrate knowledge of personal belief To analyze the time management

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory	/ Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	-	4	70	30	-	-	100

Course Content		T - Teaching Hours W -	Weig	htage
Sr.	Topics		т	w
1	Fundamentals	of grammar and Tense	11	25
		of grammar: Parts of Speech (Noun, Pronoun, Adjective, Verb, Adverb, Conjunction, Preposition, icle Tense: Application of tenses with respect to time, All tenses & their Sub-divisions	<u> </u>	
2	Fundamentals	of grammar	11	25
	Forming of Sentences & Clauses, "WH's Concepts, Understanding Sentences, Punctuation I, Degree of comparison I (Per Comparative & Superlative), Tenses (Introduction & Usage)		I (Po	sitive,
3	Fundamentals	of grammar	11	25
	Modal Verbs Auxilaries Vocabulary (Rc	ots, Prefix, Sufix, Homonyms, Synonyms &Antonyms)		
4	Self-improvem	ent And Analyzing the body language	12	25
	Self-improvement Self Confidence Self-Management Analyzing the body language Body gestures Analyzing body la Do's and Don'ts Impacts of body language		ingua	iges
		Total	45	100

Suggested Distri	bution Of Theory	Marks Using Bloo	m's Taxonomy	
Level	Remembrance	Understanding	Analyze	Evaluate
Weightage	30	30	10	10

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cour	se Outcomes	
At the	e end of this cou	irse, students will be able to:
CO1	Develop soft sk	xill for real life situations

CO2	Evaluate language skill i.e. reading, listening, speaking, writing.
CO3	Demonstrate knowledge of personal beliefs and values and a commitment to continuing personal reflection and reassessment
CO4	Analyze and develop accurate sense of Self Management

1.	High School English grammar and composition (TextBook)
	By P. C. Wren and H. Martin S.Chand
2.	High School English Grammar &Composition (TextBook)
	By Wren & Martin Blackie

Course	Bachelor of Science (B.Sc.) Semester - 2
Type of Course	Core Courses
Prerequisite	05010101-T - MICROBIAL WORLD AND PRINCIPLES OF MICROBIOLOGY
Course Objective	 To study the molecular architecture of eukaryotic cells and organelles, including membrane structure and dynamics. To get the knowledge of catalytic activity of enzyme and principles of bioenergetics. To analyze the chemical nature of biological macromolecules, their three dimensional construction, and the principles of molecular recognition. To understand the metabolism of dietary and endogenous carbohydrate, lipid, and protein. To explain the mechanisms of metabolic control and of molecular signaling by hormones.

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
	Tutorial			Theory	Marks	Practica	l Marks	Total
Lecture		Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	50	-	150

Cour	se Content	T - Teaching Hours W -	Weig	,htage		
Sr.	Topics		т	¥		
1	Introduction to	biochemistry	12	20		
	Concept of bio-molecules - Building blocks of life, Macromolecules. Concept of Bioenergetics - First and second laws of Thermodynamics. Definitions of Gibb's Free Energy, enthalpy and Entropy and mathematical relationship among them, Standard free energy change and equilibrium constant Coupled reactions and additive nature of standard free energy change, Energy rich compounds, ATP, amino acids the building blocks of proteins. Titration curve of amino acid and its Significance, Classification, biochemical structure and notation of standard protein amino acids Ninhydrin reaction. General formula of amino acid and concept of zwitterion. Natural modifications of amino acids in proteins hydrolysine, cystine and hydroxyproline, Non protein amino acids: Gramicidin, beta-alanine, Dalanine and D-glutamic acid.					
2	Carbohydrates		12	20		
	isomerism of n forms of glucos glucosamine. D		ivativ	'es,		
3	Proteins		12	20		

Protein: Primary, secondary, tertiary and quaternary structures. Enzymes: Structure of enzyme, Apoenzyme and cofactors, prosthetic group-TPP, coenzyme -NAD, metal cofactors, Classification of enzymes, Mechanism of action of enzymes: active site, transition state complex and activation energy.Lock and key hypothesis, and Induced Fit hypothesis. Significance of hyperbolic, double reciprocal plots of enzyme activity, Km, and allosteric mechanism Definitions of terms – enzyme unit, specific activity and turnover number, Effect of pH and temperature on enzyme activity. Enzyme inhibition: competitive- sulfa drugs; non-competitive-

number, Effect of pH and temperature on enzyme activity. Enzyme inhibition: competitive- sulfa drugs; non-competitiveheavy metal salts.

4 Lipids

12 20

Cou	rse Content	T - Teaching Hours W -	Weightag	
Sr.	Topics		Т	w
	Essential fatty a Building blocks phosphatidylch Sphingolipids: b mention of sph	on and major classes of storage and structural lipids. Storage lipids. Fatty acids structure and function acids. Triacylglycerols structure, functions and properties. Saponification Structural lipids. Phosphogly , general structure, functions and properties. Structure of phosphatidylethanolamine and oline, building blocks, structure of sphingosine, ceramide. Special ingomyelins, cerebrosides and gangliosides Lipid functions: cell signals,cofactors, prostaglandins, Int s, monolayers, bilayers	yceri	
5	Nucleic acids a	nd vitamins	12	20
		nd vitamins. Biosynthesis of nucleotides. Base composition. A+T and G+C rich genomes. Structure an IA and RNA. Basic concept of nucleic acids protein interactions. Concept and types of vitamins and th		ole ir
	metabolism.			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level	Remembrance	Understanding	Application	Analyze			
Weightage	30	30	30	10			

Cour	se Outcomes						
At the	At the end of this course, students will be able to:						
CO1	Developed a very good understanding of various biomolecules which are required for development and functioning of a bacterial cell.						
CO2	2 Have developed how the carbohydrates make the structural and functional						
CO3	O3 components such as energy generation and as storage food molecules for the bacterial cells						
CO4	Well conversant about multifarious function of proteins; are able to calculateenzyme activity and other quantitative and qualitative parameters of enzyme kinetics;						
CO5	Apply the Knowledge about lipids and nucleic acids and kinetics						

Refe	erence Books	
1.	A Textbook of B	Biochemistry by A.V.S.S. Rama Rao (TextBook)
2.	Biochemistry (T By Satyanarayar	FextBook) na,U. Elsevier 6th, Pub. Year 1999
3.	Biochemistry (T By Rastogi, S. C.	extBook) Tata Mcgraw Hill, Pub. Year 2004
4.		e mistry for Medical students (TextBook) Id Ramakrishna. Orient Black Swan
5.	Biochemistry (T	extBook)

List of Practical

1.	Properties of water, concept of pH and buffers, preparation of buffers and Numerical problems to explain the concepts.
2.	Numerical problems on calculations of Standard Free Energy Change and Equilibrium constant.
3.	Standard Free Energy Change of coupled reactions.
4.	Qualitative/Quantitative tests for carbohydrates, reducing sugars, non-reducing sugars.
5.	Qualitative/Quantitative tests for lipids and proteins.
6.	Study of protein secondary and tertiary structures with the help of models.
7.	Study of enzyme kinetics – calculation of Vmax , Km, Kcat values.
8.	Study effect of temperature, pH and heavy metals on enzyme activity.
9.	Estimation of any one vitamin.

Course	Bachelor of Science (B.Sc.) Semester - 2
Type of Course	Core Courses
Prerequisite	05010103-T - MICROBIAL WORLD AND MICROBIAL DIVERSITY
Course Objective	 To develops the concepts of methodology involved in studying the different components of microbial cell and various techniques and instruments involved in product analysis. To learn different types of techniques To analyze the preparation of different types of media for bacterial growth. To study about the different types of microscopic techniques To analyze the chromatographic techniques

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory	/ Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	50	-	150

	rse Content	T - Teaching Hours W		
Sr.	Topics		Т	W
1	Microbial tech	niques	12	20
	preservation/s	niques: Pure culture isolation: Streaking, serial dilution and plating methods; cultivation, maintena stocking of pure cultures; cultivation of anaerobic bacteria, and accessing non-culturable bacteria. B m. Cultivation of fungi, actinomycetes, yeasts, algae. Cultivation of anaerobes.		
2	Sterlization		12	20
		iisinfection, Antiseptic, Germicide, Sanitizer, Fungicide, Virucide, Bacteriostatic and Bactericidal age Ifectants. Sterilization by Physical Agent, Heat: Moist Heat, Dry heat, Boiling, Tyndallization, Pasteu		٦,
3	and incubatior	pressure (Autoclave), Incineration, Hot-air Oven. Radiations: Ionizing and Non-ionizing radiations. Inc n, Principle and application of Laminar airflow.		on
3			12	on
3	and incubation Microscopy Microscopy: Pr contrast micro Confocal micro		12 , Phas	on 20 e
3	and incubation Microscopy Microscopy: Pr contrast micro Confocal micro	n, Principle and application of Laminar airflow. rinciple, mechanism,, and application of photo-optical instruments (different types of Microscopes) iscope, Bright Field Microscope, Dark Field Microscope, Phase Contrast Microscope, Fluoresence mic oscopy, Scanning and Transmission Electron Microscopy. Micrometry. Principles of Centrifugation a ation techniques and its applications.	12 , Phas	on 20 e py,
-	and incubation Microscopy Microscopy: Pro- contrast micro Confocal micro Ultracentrifuga Chromatograp Chromatograp	n, Principle and application of Laminar airflow. rinciple, mechanism,, and application of photo-optical instruments (different types of Microscopes) iscope, Bright Field Microscope, Dark Field Microscope, Phase Contrast Microscope, Fluoresence mic oscopy, Scanning and Transmission Electron Microscopy. Micrometry. Principles of Centrifugation a ation techniques and its applications.	12 , Phase crosco nd 12 ffinity	on 20 e py, 20

Principle, mechanism, and application of instruments used in Spectrophotometric techniques (UV and visible).Radiobiological techniques Characters of radioisotopes, autoradiography, Radioisotope dilution technique, and pulse chase experiments. Basic principles & amp; Law of absorption and radiation and its application.

Total 60 100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy

LevelUnderstandingApplicationWeightage6040

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cour	se Outcomes						
At the	At the end of this course, students will be able to:						
CO1	O1 Apply knowledge of culture isolation methods and their preservation.						
CO2	2 Apply various sterilization methods & their applications.						
CO3	CO3 Understand various types of microscopy and their working mechanisms.						
CO4	CO4 Explain the concept of various chromatographic and electrophoretic techniques.						
CO5	Describe the concept of spectrophotometric and radiobiological techniques						

Reference Books

1.	A textbook of microbiology (TextBook) By R C Dubey Sultan Chand, Pub. Year 2012
2.	Experiments in microbiology (TextBook) By Aneja K R New Age International Publishers 4th, Pub. Year 2011
3.	Fundamentals of Microbiology (TextBook) By Alcamo, I. E, Pub. Year 1994
4.	Fundamentals of Microbiology (TextBook) By Probisher, Hinsdill et al 9th ed. Japan
5.	Laboratory Practice of Microbiology (TextBook) By Nirmal Majumdar Agrotech Press, Pub. Year 2012
6.	Microbiology (TextBook) By R. Ananthnarayan & CK Jayram Panikar
7.	Principles of Microbiology (TextBook) By R.M.Atlas, , Wm.C. Brown Publications

List of Practical

1.	Study of fluorescent micrographs to visualize bacterial cells.
2.	Ray diagrams of phase contrast microscopy and Electron microscopy.
3.	Separation of mixtures by paper / thin layer chromatography.
4.	Demonstration of column packing in any form of column chromatography.
5.	Separation of protein mixtures by any form of chromatography.
6.	Separation of protein mixtures by Polyacrylamide Gel Electrophoresis (PAGE).
7.	Determination of absorption max for an unknown sample and calculation of extinction coefficient.
8.	Separation of components of a given mixture using a laboratory scale centrifuge.
9.	Understanding density gradient centrifugation with the help of pictures.

Course	Bachelor of Science (B.Sc.)	Semester - 2
Type of Course	Discipline Specific Elective Courses	
Prerequisite	05010102-T - BACTERIOLOGY AND SYSTEMATICS	
Course Objective	 To provide the students with the basic information about microorganisms To learn and understand the mode of life of microorganisms. To distinguish between bacteria and virus. To provide information about pathogenic, non-pathogenic and useful microbes. To understand the taxonomy of bacterial cells 	

Teaching Scheme (Contact Hours)				Exa	mination Sch	eme		
				Theory	Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	50	-	150

Course Content		T - Teaching Hours W -	Weig	htage
Sr.	Topics		т	w
1	Cell organizatio	on	12	20
	negative cell w	and arrangements, capsule, flagella and pili, Composition and detailed structure of gram- positive an all and archaeal cell wall, Structure, chemical composition and functions of bacterial and archaeal ce bosomes, inclusions, nucleoid, plasmids, structure, formation and stages of sporulation	-	am-
2	Bacterial grow	th and control	12	20
	differential me	Components of media, Synthetic or defined media, Complex media, enriched media, selective medi dia, enrichment culture media Pure culture isolation: Streaking, serial dilution and plating methods, intenance and stocking of pure cultures, cultivation of anaerobic bacteria Growth: Binary fission, pha	-	ıf
3	Bacterial Syste	matics and Taxonomy	12	20
	of the following	nenclature, systematics, types of classifications Morphology, ecological significance and economic in g groups: Archaea: methanogens, thermophiles and halophiles am negative and Gram positive	nport	ance
	-	: Non-proteobacteria– Deinococcus, Chlamydiae, Spirochetes Alpha proteobacteria- Rickettsia, Rhizo Gamma proteobacteria –Escherichia,Shigella,Pseudomonas	bium	I,
	Gram positive:	Low G+C: Mycoplasma, Bacillus, Clostridium, Staphylococcus High G+C: Streptomyces, Frankia		
4	Viruses		12	20

Properties of viruses; general nature and important features Subviral particles; viroids, prions and their importance, Isolation and cultivation of viruses, Morphological characters: Capsid symmetry and different shapes of viruses with examples. Viral multiplication in the Cell: Lytic and lysogenic cycle Description of important viruses: salient features of the viruses infecting different hosts - Bacteriophages (T4 & Lambda); Plant (TMV & Cauliflower Mosaic Virus), Human (HIV & Hepatitis viruses

5 Classification, systematics and taxonomy

12 20

Course Content T - Teaching Hot		T - Teaching Hours W -	ours W - Weigh	
Sr.	Topics		Т	w
	recent approac sequences, and	ples of classification,systematics and taxonomy,concept of species,taxa,strain;conventional, molecu hes to polyphonicbacterialtaxonomy, evolutionary chronometers, rRNA oligonucleotide sequencing protein sequences. Differences between eubacteriaand archaebacteria. Eubacteria: Morphology, plogical significance and economic importance of Gram negative and Grampositive bacteria		
		Total	60	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy				
Level	Remembrance	Understanding	Analyze	
Weightage	40	40	20	

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:				
CO1	CO1 Has acquired a fairly good understanding of the different types of bacteria and viruses.				
CO2	2 Has acquired a fairly good describing of the structure and other salient characteristics of bacteria and viruses.				
CO3	Has acquired skills of visualizing bacteria by staining, using a microscope and culturing bacteria in microbiological media to describe the features of bacterial colonies.				
CO4	CO4 Has acquired knowledge about the pathogenic and non-pathogenic nature of microbes.				
CO5	Understand the taxonomy of bacterial cells				

Reference Books

	Basic Virology (TextBook) By Wagner EK, Hewlett MJ. (2004) Blackwell Publishing 2nd edition			
	Bergeys manual of systematic bacteriology (TextBook) By Williams and Wilkins- A Waverly company			
	Introduction to bacteriology (TextBook) By DPTripathi Kalyani Publishers, Pub. Year 2014			
	Plant bacteriology (TextBook) By Kalyan K Mondal Kalyani Publishers 1, Pub. Year 2015			
	Textbook of Bacteriology (TextBook) CALLISTO REFERENCE, Pub. Year 2019			
List of	of Practical			
1.	Preparation of different media: synthetic media, Complex media Nutrient- agar, McConkey agar, EMB a	agar.		
2.	Gram staining			

Ζ.	Gram stanning
3.	Acid fast staining-permanent slide only.
4.	Isolation of pure cultures of bacteria by streaking method.
5.	Preservation of bacterial cultures by various techniques.

6.	Estimation of CFU count by spread plate method/pour plate method.
7.	Motility by hanging drop method.
8.	Study of the structure of important animal viruses (rhabdo, influenza, paramyxohepatitis B and retroviruses) using models, videos, and electron micrographs
9.	Study of the structure of important plant viruses (caulimo, Gemini, tobacco ringspot, cucumber mosaic and alpha-alpha mosaic viruses) using electron micrographs
10.	Study of the structure of important bacterial viruses (φX174,T4,3) using electron micrograph.
11.	Isolation and enumeration of bacteriophages (PFU) from water/sewage sample using double agar layer technique
12.	Study of cytopathic effects of viruses using photographs

Course	Bachelor of Science (B.Sc.) Semester - 2
Type of Course	Ability Enhancement Compulsory Courses
Prerequisite	
Course Objective	 To apply the soft skills in theoretical and practical ways and also to develop the effective communication skills among students Learning about the essential factors for personality development and bringing them into practice. Apply and demonstrate knowledge of personal belief To analyze the time management.

Teaching Scheme (Contact Hours)				Examination Scheme				
				Theory Marks		Practical Marks		Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	-	4	70	30	-	-	100

Course Content		T - Teaching Hours W -	Weig	htage
Sr.	Topics		т	w
1	Introduction to	o soft skill	15	25
	0	ntroduction to soft skill, Types of soft skill (communication, empathy, leadership, time management, onflict resolution, listening skill,) Difference between soft skill and hard skill, IQ,SQ,EQ and emotion		
2	Habits		15	25
		les, Identifying Good And Bad Habits, Habit Cycle; Breaking Bad Habits, Using The Zeigarnik Effect Fo Id Personal Growth, Forming Habits of Success	r	
3	Personality dev	velopment	15	25
	Meaning of per	sonality, elements of personality Determents of personality Personal development plan		
4	Self-manageme	ent skill	15	25
	Time managem	nent (planning, scheduling and meeting)	LI	
	1	Total	60	100

Suggested Distri				
Level	Remembrance	Understanding	Application	Analyze
Weightage	30	40	10	20

Cour	se Outcomes						
At the	At the end of this course, students will be able to:						
CO1	Develop soft skill for real life situations						
CO2	Evaluate language skill i.e. reading, listening, speaking, writing						
CO3	Demonstrate knowledge of personal beliefs and values and a commitment to continuing personal reflection and reassessment						
CO4	Analyze and develop accurate sense of Self Management						

	High School English grammar and composition (TextBook) By P. C. Wren and H. Martin S.Chand
2.	High School English Grammar &Composition (TextBook) By Wren & Martin Blackie

Course	Bachelor of Science (B.Sc.) Semester - 2
Type of Course	Ability Enhancement Compulsory Courses
Prerequisite	05000102-T - ENVIRONMENTAL SCIENCE
Course Objective	 To study about the management techniques and control of various disasters. To study the behavior of natural disasters and their impacts on human health. To study the behavior of man-made disasters and their impacts on human health To understand the transnational character of environmental problems and their direct indirect impact as disaster. To apply knowledge of different laws and policies regarding disaster management.

Teaching Scheme (Contact Hours)				Examination Scheme					
				Theory	/ Marks	Practical Marks		Total	
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Total Marks	
4	-	-	4	70	30	-	-	100	

Cour	se Content	T - Teaching Hours W -	Weig	htage
Sr.	Topics		т	w
1	Disasters in Inc	dia - An Overview:	15	25
		pefinition, Disasters not new to Mankind, Disasters – Global Scenario, Vulnerability Profile of India, Cl and Effect of Disasters, Types of Disasters	imate	2
2	Institutional Fr	amework:	15	30
3	Emergence of I Framework, Pr authority assoc	saster Management in India, Disaster Management during British Administration and Post-Independ nstitutional Arrangement in India, Organization and Structure of Disaster Management, Disaster Ma esent Structure for Disaster Management in India, Disaster Management Act, 2005, Different comm ciated with disaster management d Mitigation; Preparedness and Response	nage	ment
		revention and Mitigation; Preparedness and Response regarding different disasters		
4	Policy and Guid		15	15
	Objectives of G	lational Policy on Disaster Management (NPDM), National Plan on Disaster Management, Focus and iuidelines, Management of Droughts, National Action Plan on Climate Change, Rules notified under t gement Act, 2005		
		Total	60	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level	Remembrance Understanding Application		Application	Analyze			
Weightage	20	30	30	30			

Cour	se Outcomes	
At the	end of this cours	se, students will be able to:
CO1	Explain disaster r	management theory (cycle, phases, risk, crisis, emergency, disasters, resilience)
CO2		s, disasters and associated natural phenomena and their interrelationships, causes and their effects - anitarian Assistance before and after disaster
CO3		pogenic hazards, disasters and associated activities and their interrelationships of the subsystems - Green obal warming, Causes and their effects and development of humanitarian assistance before and after
CO4	Apply knowledge Risk Reduction.	e about existing global frameworks and existing agreements and role of community in successful Disaster
CO5	Remember the d	lifferent laws and policies regarding disaster management.

1.	Disaster Management (TextBook)
	By Harsh K. Gupta Universities Press, Pub. Year 2003
2.	Disaster Management (TextBook)
	By K. Palanivel J. Saravanavel S. Gunasekaran Allied Publishers Pvt. Ltd
3.	Disaster Science and Management (TextBook)
	By Tushar Bhattacharya McGraw Hill Education (India) Pvt. Ltd.
4.	Earth and Atmospheric Disaster Management : Nature and Manmade (TextBook)
	By C. K. Rajan, Navale Pandharinath B S Publication

Course	Bachelor of Science (B.Sc.)	Semester - 3
Type of Course	Core Courses	
Prerequisite	Basic knowledge of virology 05010203-T - BACTERIOLOGY AND VIROLOGY	
Course Objective	 1 To evaluate the classification of viruses. 2 To understand bacteriophage and its life cycle. 3 To Able to write the Pathogenesis of viral infections 4 To Explain vaccine strategies and mechanisms of antiviral drugs 5 To get knowledge about viral vectors. 	

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme		
			Theor		/ Marks	Practical Marks		Total	
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks	
4	-	2	5	70	30	-	-	100	

Cour	Course Content T - Teaching Hours W - Weightage						
Sr.	Topics		т	w			
1	Nature and Pro	operties of Viruses	18	20			
	concept of viro enveloped and	operties of Viruses Introduction: Discovery of viruses, nature and definition of viruses, general proper ids, virusoids, satellite viruses and Prions. Theories of viral origin Structure of Viruses: Capsid symme non-enveloped viruses Isolation, purification and cultivation of viruses Viral taxonomy: Classification of different groups of viruses	etry,				
2	2 Bacteriophages						
	Bacteriophages Diversity, classification, one step multiplication curve, lytic and lysogenic phages (lambda phage) concept of early and late proteins, regulation of transcription in lambda phage						
3	Modes of viral	transmission	22	20			
	Modes of viral transmission: Persistent, non-persistent, vertical and horizontal Salient features of viral Nucleic acid : Unusual bases (TMV,T4 phage), overlapping genes (ϕ X174, Hepatitis B virus), alternate splicing (HIV), terminal redundancy (T4 phage), terminal cohesive ends (lambda phage), partial double stranded genomes (Hepatitis B), long terminal repeats (retrovirus), segmented (Influenza virus), and non-segmented genomes (picornavirus), capping and tailing (TMV) Viral multiplication and replication strategies: Interaction of viruses with cellular receptors and entry of viruses. Replication strategies of viruses as per Baltimore classification (phi X 174, Retroviridae, Vaccinia, Picorna), Assembly, maturation and release of virions.						
4	Introduction to	o oncogenic viruses	5	20			
	Introduction to oncogenic viruses Types of oncogenic DNA and RNA viruses: Concepts of oncogenes and proto-oncogenes						
5	Antiviral comp	ounds and their mode of action	6	20			
	Antiviral compounds and their mode of action Interferon and their mode of action General principles of viral vaccination, Use of viral vectors in cloning and expression, Gene therapy and Phage display						
		Total	60	100			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level	Remembrance	Understanding					

Weightage	40	60
-----------	----	----

Cour	Course Outcomes							
At the	At the end of this course, students will be able to:							
CO1	O1 Understand the architecture of viruses, their classification and the methods used in their study.							
CO2	Able to understand the replication strategies of representative viruses from the seven Baltimore classes and comprehend the intricate interaction between viruses and host cells.							
CO3	Comprehend the role of viruses in onco genesis, and ways of preventing/ treating viral infections							
CO4	Know how viruses can be used as tools to study biological processes, as cloning vector sand for gene transfer.							
CO5	Get knowledge	Get knowledge about viral vectors and anti-viral components.						

1.	Virology: Principles and Applications (TextBook) By Carter J and Saunders V (2007) John Wiley and Sons
2.	Virology. (TextBook) By Levy JA, Conrat HF, Owens RA. (2000), Prentice Hall publication, New Jersey. 3rd edition
3.	Principles of Virology, Molecular biology, Pathogenesis and Control. (TextBook) By Flint SJ, Enquist, LW, Krug, RM, Racaniello, VR, Skalka, AM (2004) . ASM press Washington DC 2nd edition.
4.	Plant Viruses By Nayudu MV. (2008) Tata McGraw Hill, India
5.	Plant Virology By Mathews. (2004) Hull R. Academic Press, New York.
6.	Basic Virology By Wagner EK, Hewlett MJ. (2004) Blackwell Publishing 2nd edition

List of Practical

1.	Study of the structure of important animal viruses (rhabdo, influenza, paramyxo hepatitis B and retroviruses) using electron micrographs				
2.	Study of the structure of important plant viruses (caulimo, Gemini, tobacco ring spot, cucumber mosaic and alpha-alpha mosaic viruses) using electron micrographs				
3.	Study of the structure of important bacterial viruses (ϕ X 174, T4, λ) using electron micrograph.				
4.	I. Isolation and enumeration of bacteriophages (PFU) from water/sewage sample using double agar layer technique				
5.	Studying isolation and propagation of animal viruses by chick embryo technique				
6.	Study of cytopathic effects of viruses using photographs				
7.	Perform local lesion technique for assaying plant viruses.				
8.	Virus Isolation in Embryonated Eggs.				
9.	. Virus Purification				
10.	Samples Processing for Virus Isolation.				

Useful Links

1 https://alison.com/course/basics-of-virology

2 https://www.coursera.org/learn/virology-epidemiology

3 https://onlinecourses.swayam2.ac.in/cec23_bt08/preview

Course	Bachelor of Science (B.Sc.)Semester - 3
Type of Course	Core Courses
Prerequisite	Knowledge of microbes and classification 05010103-T - MICROBIAL WORLD AND MICROBIAL DIVERSITY
Course Objective	 To outline the basic characters, structure of algae and fungi. To understand the life cycle of algae and fungi. To discuss the classification scheme of algae and fungi. To construct the knowledge of economic importance of various algal and fungal classes.

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory Marks		Practical Marks		Total
Lecture	Tutorial	Tutorial Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	-	-	100

Cour	se Content	T - Teaching Hours W -	Weig	htage			
Sr.	Topics		Т	w			
1	Classification o	f fungi	15	25			
	(a). General classification and economic importance of fungi with examples in agriculture, environment, industry, medicine, food, bioremediation (of wood, paper, textile, leather), mycotoxins (b). Life cycle, structure and occurrence – Cellular slime molds, True slime mold						
2	Detailed characteristics of fungi 1			25			
	(a). Oomycetes	, Chytridiomycetes , Zygomycetes (b).Ascomycetes, Basidiomycetes , Deuteromycetes					
3	Algae		15	25			
	(a). General classification and economic importance of algae with examples in agriculture, environment, industry and food (b). Life cycle, thallus organisation and occurrence -Chlorophyceae ,Charophyceae						
4	Diatoms and C	yanobacteria	15	25			
	(a).Diatoms , Xa	nthophyceae (b). Phaeophyceae Rhodophyceae: Cyanobacteria					
		Total	60	100			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy						
Level Remembrance Understanding Application						
Weightage	40	20	40			

Co	urse Outcomes					
At ti	At the end of this course, students will be able to:					
CO	1 Student will able to describe habit and habitat, mode of nutrition and criteria for classification of algae and fungi					
CO2	2 Student will de	scribe and illustrate the life cycles of fungi				

CO3	Student will describe and illustrate the life cycles of algae
CO4	Student will understand the economic importance of algae
CO5	Student will identify the ecological importance of fungi, highlight the significance of fungi in industry and human welfare.

1.	Introductory mycology By Alexopoulos, C. J. LWW, Pub. Year 1952
2.	Textbook of medical mycology By Chander, J JP Medical Ltd
3.	Introduction to fungi By Webster, J., & Weber, R. Cambridge university press., Pub. Year 2007
4.	An introduction to fungi By Dube, H. C. Scientific Publishers, Pub. Year 2013
5.	Algae By Vashishta, D. R S. Chand
6.	Experimental Microbiology (TextBook) By Rakesh J Patel

List of Practical 1. Morphological study of representative members of fungi 2. Morphological study of representative members of algae 3. Isolation of different fungi from soil sample 4. Isolation and identification of different fungal strain 5. Identification of algae from sample -water 6. Identification of algae from sample - soil 7. Isolation and identification of algae from water. Symptomology of some diseased specimens 8. 9. Identification of fungal spores 10. Observation of Nostoc or Anabaena

Useful Links https://nptel.ac.in/courses/102105087 https://www.coursera.org/learn/algae https://onlinecourses.swayam2.ac.in/nos23_ge06/preview

Course	Bachelor of Science (B.Sc.) Semester - 3
Type of Course	Discipline Specific Elective Courses
Prerequisite	
Course Objective	 To understanding basic knowledge of biosafety, biological safety cabinets & biosafety levels of specific microorganisms. To learn biosafety guidelines and regulation, biosafety committees and protocol & various agencies, treaties and international organizations associated with IPR. To understand what is meant by intellectual property and its importance, knowledge of patents, trademarks, copyright, and geographical indications & WIPO. To implement the basics related to grant of patent and patenting authorities, types of patent applications & patent filing procedures.

Teaching Scheme (Contact Hours)				Exa	mination Sch	eme		
				Theory	/ Marks	Practica	l Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	-	4	70	30	-	-	100

Cour	se Content	T - Teaching Hours W -	Weig	shtage
Sr.	Topics		т	w
1	Introduction of	f Biosafety	8	20
		duction; biosafety issues in biotechnology; Biological Safety Cabinets & their types; Primary Contain safety Levels of Specific Microorganisms	nent	for
2	Biosafety Guide	elines	16	20
	Challenges; Rol Environmental	elines: Biosafety guidelines and regulations (National and International); GMOs/LMOs- Concerns and e of Institutional Biosafety Committees (IBSC), RCGM, GEAC etc. for GMO applications in food and ag release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication; Overview o greements - Cartagena Protocol. AERB/RSD/RES guidelines for using radioisotopes in laboratories ar	gricul of	lture;
3	Introduction to	Intellectual Property	12	20
	Traditional Kno	Intellectual Property: Patents, Types, Trademarks, Copyright & Related Rights, Industrial Design and wledge, Geographical Indications- importance of IPR – patentable and non-patentable – patenting limitechnological inventions – World Intellectual Property Rights Organization (WIPO).	-	
4	Patent Grant		12	20
	of Addition; An	and Patenting Authorities: Types of patent applications: Ordinary, PCT, Conventional, Divisional and introduction to Patent Filing Procedures; Patent licensing and agreement; Patent infringement- men, case studies, Rights and Duties of patent owner.		
5	Agreements an	d Treaties	12	20
	Treaty on inter	d Treaties: GATT, TRIPS Agreements; Role of Madrid Agreement; Hague Agreement; WIPO Treaties; national recognition of the deposit of microorganisms; UPOV & Brene conventions; Patent Co-opera Idian Patent Act 1970 & recent amendments.		pest
		Total	60	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy

Level	Remembrance	Understanding	Application
Weightage	40	40	20

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:					
CO1	CO1 Apply knowledge of biosafety for handling hazardous material.					
CO2	O2 Recognize biosafety guidelines and institutional biosafety committees					
CO3	O3 Describe different types of intellectual property right and its importance.					
CO4	CO4 Discuss different types of patent applications & patent filing procedures					
CO5	Identify different agreements and treaties related to intellectual property right.					

Reference Books

1.	Bioethics and Biosafety in Biotechnology by v.c krishna
2.	Intellectual Property and Bioethics – An Overview Consultation Draft
3.	WIPO INTELLECTUAL PROPERTY HANDBOOK
4.	Biotechnology and Intelectual Property Rights: Legal and Social Impliocations.Singh K K (2015)
4.	

Course	Bachelor of Science (B.Sc.)	emester - 3
Type of Course Generic Elective Courses		
Prerequisite To understand the techniques and instruments related to microbial diversity. 05010202-T - MIC TECHNIQUES & INSTRUMENTS		
Course Objective	 To remember and develops the concepts of methodology involved in studying the different components of microbial cell ,various techniques and instruments involved in product analysi 2) To summarize different techniques and instruments used in Microbiology. To focuses on imparting the principles of measurement which includes the working mechan various sensors and devices. To detect amino acids with help of chromatography. To get brief knowledge of principles and applications of electrophoresis. 	is.

Teaching Scheme (Contact Hours)				Exa	mination Sch	eme		
				Theory	/ Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	-	-	100

Cour	se Content	T - Teaching Hours W -	Weig	htage
Sr.	Topics		т	w
1	Microscopy		20	20
		ight field and dark field microscopy, Fluorescence Microscopy, Phase contrast Microscopy, Confocal ectron Microscopy (Scanning and Transmission Electron Microscopy)		
2	Chromatograp	ny	20	20
	chromatograph	ny: Principles and applications of paper chromatography (including Descending and 2-D), Thin layer ny. Column packing and fraction collection. Gel filtration chromatography, ion- exchange chromatogr tography, GLC, HPLC.	aphy	and
3	Electrophoresis	5	20	20
	-	s: Principle and applications of native polyacrylamide gel electrophoresis, SDS- polyacrylamide gel s, 2D gel electrophoresis, Isoelectric focusing, Zymogram preparation and Agarose gel electrophoresis	S	
4	Spectrophotom	netry	20	20
		netry: Principle and use of study of absorption spectra of biomolecules. Analysis of biomolecules usin olorimetry and turbidometry	g UV	and
5	Centrifugation		20	20
	-	Preparative and analytical centrifugation, fixed angle and swinging bucket rotors. RCF and sediment Ferential centrifugation, density gradient centrifugation and ultracentrifugation	ation	
		Total	10 0	100

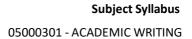
Suggested Distribution Of Theory Marks Using Bloom's Taxonomy					
Level	Understanding	Application	Analyze		
Weightage	60	20	20		

Cour	se Outcomes					
At the	At the end of this course, students will be able to:					
CO1	O1 Understand about different instruments use in lab.					
CO2	CO2 Enumerate the applications and principles of chromatography and microscopy.					
CO3	CO3 Summarize about the principle, working and applications of commonly used instruments in microbiology.					
CO4	Preparing learning applications of different separation techniques such as electrophoresis, centrifugation, etc.					
CO5	5 Students will be able to handle, calibrate and use the instruments.					

Reference Books

1.	Guide to microbiological control in pharmaceuticals and medical devices (TextBook) By Denyer, S. P. and Baird, R. M. CRC Press, Boca Raton (2008). 2nd edition
2.	Encyclopedia of Bioprocess Technology. (TextBook) By Flickinger, M. C. and Drew, S. W. Wiley- Interscience, New Jersey. (1999).
3.	Microbial Processes and Products By Barredo, J. L. Humana Press, New Jersey. (2005)
4.	Handbook of Pharmaceutical Biotechnology. (TextBook) By Gad, S. C. Wiley-Interscience, New Jersey. (2007)
5.	Pharmaceutical Microbiology By W.B. Hugo and A.D. Russel: Blackwell Scientific publications, Oxford London.
6.	Pharmaceurcal Biotechnolog- Concepts and Applications (TextBook) By Walsh, G. Wiley. (2007)

List of Practical


1.	Introduction ,principle and working of microscopy
2.	Separation of components by HPLC
3.	Demonstration of Electrophoresis
4.	Introduction , principle and working of Spectrophotometer
5.	Introduction , principle and working of Centrifuge
6.	To study Thin layer chromatography
7.	Demonstration of SDS
8.	To study Paper chromatography
9.	To study glucose estimation by help of spectrophotometer
10.	Introduction, principle and working of Colorimeter.

Useful Links

1) https://nptel.ac.in/courses/108102191

2) https://www.sanfoundry.com/best-reference-books-instrumentation-instrumental-analysis/ 3) https://theinstrumentguru.com/instrumentation-books-pdf-instrumentation-e-books/

Course	Bachelor of Science (B.Sc.)	Semester - 3
Type of Course	Ability Enhancement Compulsory Courses	
Prerequisite		
Course Objective	 To develop necessary writing skills used in academics and job To understand the writing skills for communication To examine the cv writing and types of letter To write up the notice agenda and minutes of meetings 	

Т	eaching Scheme (Contact Hours)			Exa	mination Sch	eme	
				Theory	Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	-	4	70	30	-	-	100

Cour	se Content	T - Teaching Hours W -	Weig	shtage
Sr.	Topics		т	w
1	Academic & res	search writing	10	25
	Introduction; Ir research writin	nportance of academic writing; Basic rules of academic writing, English in academic writing I & II; Sty g	les o	f
2	Plagiarism		12	25
	0	oduction; Tools for the detection of plagiarism; Avoiding plagiarism, Literature review: Introduction, cess of literature review, Online literature databases; Literature management tools, referencing and		
3	Writing		11	25
	Report writing	for an event, CV writing, Job Application, Types of letters- Business letters, Cover letter		
4	Notice		11	25
	Memo, Notice,	Agenda, Minutes of Meeting, Business correspondence, How to write emails- do's and don'ts		
		Total	44	100

Suggested Distr	ibution Of Theory	Marks Using Bloo	m's Taxonomy	
Level	Remembrance	Understanding	Analyze	
Weightage	40	40	20	I

Cour	se Outcomes
At the	end of this course, students will be able to:
CO1	Differentiate between various kinds of academic writings.
CO2	enable writing skills for communication
CO3	Build up the cv writing and letter types

CO4 Analyze the preparation of notice, agenda and minutes of minutes

Refe	erence Books	
1.		ing, Anti- Plagiarism And Citations (TextBook) r Kanvaria Shipra Publications
2.	Academic Writ By Stephen Bai	ing: A Handbook for International Students (TextBook) ley Routledge
3.	-	glish grammar and composition (TextBook) Ind H. Martin S.Chand

Course	Bachelor of Science (B.Sc.) Semester - 4
Type of Course	Core Courses
Prerequisite	05010102-T - BACTERIOLOGY AND SYSTEMATICS
Course Objective	 To deliver strong foundation on cell theories, cell types and cellular diversity. To enable the students to acquire fundamental knowledge about cytoskeleton and organellar function. To understand the concept of cell division and cell signaling and communication. To introduce the students to the basics of central dogma of molecular biology and significance of its study. Students understand the chemical and molecular processes that occur in and between the cells To provide the information about molecular Events of Replication, Transcription and processing of transcripts

Т	eaching Scheme (Contact Hours)			Exa	mination Scho	eme	
				Theory	/ Marks	Practica	l Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	-	-	100

Cour	se Content	T - Teaching Hours W -	Weig	shtage
Sr.	Topics		т	W
1	Structure and o	organization of Cell	12	20
	molecules Cell junctions, tight peroxisomes Cytoskeleton: S surface protrus Nuclear envelo Endoplasmic Re control in ER, s	on –Prokaryotic and eukaryotic (Plant and animal cells) Plasma membrane: Structure and transport o Wall: Eukaryotic cell wall, Extra cellular matrix and cell matrix interactions, Cell-Cell Interactions - ad junctions, gap junctions, and plasmodesmata (only structural aspects) Mitochondria, chloroplasts an structure and organization of actin filaments, association of actin filaments with plasma membrane, o ions, intermediate filaments, microtubules pe, nuclear pore complex and nuclear lamina Chromatin – Molecular organization Nucleolus, Riboson eticulum – Structure, targeting and insertion of proteins in the ER, protein folding, processing and qu mooth ER and lipid synthesis, export of proteins and lipids, Golgi apparatus – Organization, protein protein sorting and export from Golgi Apparatus Lysosomes.	hesio nd cell mes,	on
2	Cell Signaling a	nd Cell Cycle, Cell Death and Cell Renewal	10	20
	pathway, cyclic	cules and their receptors, Function of cell surface receptors, Pathways of intra-cellular receptors – Cy GMP and MAP kinase pathway_Eukaryotic cell cycle and its regulation, Mitosis and Meiosis Develo and types programmed cell death Stem cells_embryonic stem cell, induced pleuripotent stem cells.		
3	Structures and	Replication of DNA and RNA / Genetic Material	20	20

DNA Structure: Miescher to Watson and Crick- historic perspective, DNA structure, and Salient features of double helix, Types of DNA, Types of genetic material, denaturation and renaturation, cot curves. DNA topology - linking number, topoisomerases; Organization of DNA Prokaryotes, Viruses, Eukaryotes. RNA Structure, Organelle DNA -- mitochondria and chloroplast DNA. Bidirectional and unidirectional replication, semi- conservative, semi- discontinuous replication Mechanism of DNA replication: Enzymes and proteins involved in DNA replication –DNA polymerases, DNA ligase, primase, telomerase – for replication of linear ends Various models of DNA replication including rolling circle, D- loop (mitochondrial), Θ (theta) mode of replication and other accessory protein, Mismatch and excision repair.

4 Transcription and translation in Prokaryotes and Eukaryotes

6 20

Cou	rse Content	T - Teaching Hours W -	Wei	ghtag
Sr.	Topics		Т	w
		Definition, difference from replication, promoter - concept and strength of promoter RNA Polymeras nit Transcription in Eukaryotes: RNA polymerases, general Transcription factors.	e and	ៅ the
		ncept of introns and exons, RNA splicing, spliceosome machinery, concept of alternative splicing, n and capping, Processing of rRNA, RNA interference: si RNA, miRNA and its significance		
5	Translation (Pr	okaryotes and Eukaryotes)	8	20
		nachinery, Charging of tRNA, aminoacyl tRNA synthetases, Mechanisms of initiation, elongation and polypeptides in both prokaryotes and eukaryotes, Fidelity of translation, Inhibitors of protein synthe d eukaryote.	esis ir	١
		Total	56	100

Suggested Distr	Suggested Distribution Of Theory Marks Using Bloom's Taxonomy						
Level	Understanding	Application					
Weightage	40	60					

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:					
CO1	nderstand knowledge of cellular structure and cell organization					
CO2	Apply basic knowledge of cell signaling and cell cycle					
CO3	Explain the structure of genetic material and its replication process					
CO4	Apply basic knowledge of the transcription process in various cell types.					
CO5	Apply basic knowledge of translation processes in various cell types.					

Reference Books

1.	Brown, T.A. (1998). Molecular biology Labfax II: Gene analysis. II Edition. Academic Press, California, USA (TextBook)
----	--

2.	Cell and molecular biology (TextBook) By Sheeler Philip John Wiley 3rd, Pub. Year 2002
3.	Cell and Molecular Biology (TextBook) By Rastogi , S. C New Age International 3rd, Pub. Year 2012
4.	Cell and molecular biology : Concepts and experiments (TextBook) By Karp, Gerald 5th, Pub. Year 2006
5.	Cell Biology (TextBook) By Singh , S . P RASTOGI PUBLICATIONS 10th, Pub. Year 2014
6.	Cell biology : organelle structure and function (TextBook) By Sadava David Panima Publishing Corporation, Pub. Year 2004

List of Practical

1.	Mitosis and the Cell Cycle in Onion Root-Tip Cells
2.	Mitochondria isolation
3.	Preparation of microscope slide for Dicot leaf section
4.	Extraction of Genomic DNA from Rat Blood
5.	Genomic DNA Extraction from Plant Tissue
6.	Characterization of DNA by Spectrophotometric Assay and Melting Temperature (Tm)
7.	Agarose Gel Electrophoresis
8.	Polymerase Chain Reaction (PCR)
9.	Digestion of DNA with Restriction Enzymes
10.	Sanger Sequencing

Course	Bachelor of Science (B.Sc.)	Semester - 4
Type of Course	Core Courses	
Prerequisite	05010203-T - BACTERIOLOGY AND VIROLOGY	
Course Objective	 To Describe the genomic organization of model organization and mutation process To create good knowledge of genetic exchange mechanism To understand the different types of plasmids To do experiment of isolation of DNA and visualization process To define the mapping process by use of recombination method 	

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory	/ Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	-	-	100

Course Content		T - Teaching Hours W -	Weig	htage					
Sr.	Topics		т	w					
1	Genome Orgar	nization and Mutations	10	25					
	Genome organization: E. coli, Saccharomyces Mutations and mutagenesis: Definition and types of Mutations; Physical and chemical mutagens; Molecular basis of mutations; Functional mutants (loss and gain of function mutants); Uses of Mutations: Reversion and suppression: True revertants; Intra- and inter-genic suppression; Ames test; Mutator genes								
2	Plasmids		12	25					
		s of plasmids – F plasmid, R Plasmids, colicinogenic plasmids, Ti plasmids, linear plasmids, Plasmid re g, Host range, plasmid-incompatibility, plasmid amplification, Regulation of copy number, curing of	-						
3	Mechanisms o	f Genetic Exchange	11	25					
	Interrupted ma	n - Discovery, mechanism of natural competence Conjugation - Discovery, mechanism, Hfr and F' str iting technique and time of entry mapping Transduction - Generalized transduction, specialized trans es, Mapping by recombination and co-transduction of markers		ion,					
4	Transposable e	lements	11	25					
	replicative tran	nsposable elements – Insertion Sequences, composite and non-composite transposons, Replicative a sposition, Mu transposon Eukaryotic transposable elements - Yeast (Ty retrotransposon), Drosophil ze (Ac/Ds) Uses of transposons and transposition		on					
		Total	44	100					
			1 1]					

 Suggested Distribution Of Theory Marks Using Bloom's Taxonomy

 Level
 Understanding

 Weightage
 100

Cour	Course Outcomes							
At the	At the end of this course, students will be able to:							
CO1	CO1 Understand the organization of genomes in E. coli/Saccharomyces and the types and molecular basis of mutations.							
CO2	Classify plasmids, their genetic map, replication and application.							
CO3	Discover host range, plasmid-incompatibility and plasmid amplification.							
CO4	4 Discover transformation, conjugation (Hfr and F' strains) and transduction.							
CO5	Determine different types of proker atia and outker atia transpossible elements and their mechanisms of transposition							

Reference Books

1.	Genetics (TextBook) By Strickberger Monroe W PHI Learning 3rd, Pub. Year 2008
2.	Genetics (TextBook) By singh, B.D, kalyani Publishers 3ed, Pub. Year 2019
3.	Genetics (TextBook) By Gupta P K 3rd, Pub. Year 2004
4.	Objective Genetics (TextBook) By Singh, Phundan Kalyani Publishers 4ed.
5.	A textbook of microbiology (TextBook) By R C Dubey Sultan Chand, Pub. Year 2012

List of Practical

Preparation of	Preparation of Master and Replica Plates.					
Study the effec	tudy the effect of chemical (HNO2) and physical (UV) mutagens on bacterial cells.					
Study survival c	udy survival curve of bacteria after exposure to ultraviolet (UV) light.					
Isolation of Plas	solation of Plasmid DNA from <i>E.coli</i> .					
Study different	Study different conformations of plasmid DNA through agarose gel electrophoresis.					
Demonstration	of bacterial conjugation					
Demonstration	of bacterial transformation and transduction.					
Demonstration of Ames test.						
	Study the effect Study survival of Isolation of Plas Study different Demonstration Demonstration					

Course	Bachelor of Science (B.Sc.)	Semester - 4
Type of Course Discipline Specific Elective Courses		
Prerequisite	05010101-T - MICROBIAL WORLD AND PRINCIPLES OF MICROBIOLOGY	
Course Objective	To define antimicrobial agents and their properties To understand the types of disinfectants and antiseptics To explain the cell culture technique To design the aspect area of microbiology To develop practical skills for pharmaceutical products	

Teaching Scheme (Contact Hours)				Examination Scheme				
	Tutorial	Tutorial Lab	Credit	Theory Marks		Practical Marks		Total
Lecture				External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	20	-	-	100

Course Content		T - Teaching Hours W -	Weig	shtage		
Sr.	Topics		т	w		
1	Microbiologica	cal assay for pharmaceutical analysis 15				
	Antibiotics and Synthetic antimicrobial agents microbial resistance; therapeutic, prophylactic usage and adverse reactions; Antibiotic and Synthetic antimicrobial agents: Mechanism of action of antibiotics Inhibition of cell wall synthesis, nucleic acid and protein synthesis. Β-lactam, aminoglycosides, tetracyclines, macrolides. Antifungal antibiotics: Griseofulvin. Antiviral drugs: Amantidines; Nucleoside analogues, interferons. Peptide antibiotics. Synthetic antibiotics: Sulphonamides Chloramphenicol; Quinolone Bacterial resistance to antibiotics; Penetration of antimicrobial agents (cellular permeability barrier, cellular transport system and drug diffusion).					
2	Monitoring mi	crobiological quality	5	10		
		types of microbial contaminants, assessment of microbial contamination and spoilage. Preservation of eutical products using antimicrobial agents, and evaluation of microbial stability of formulations.				
3	Microbial aspe	cts of pharmaceutical processing	10	20		
	Classification and mode of action of disinfectants. Factors influencing disinfection, antiseptics and their evaluation. For bacteriostatic and bactericidal actions Evaluation of bactericidal & Bacteriostatic agents. Sterility testing of products (solids, liquids, ophthalmic and other sterile products) according to IP, BP and USP.					
4	Pharmaceutica	l microbiology	15	25		

Designing of aseptic area, laminar flow equipments; study of different sources of contamination in an aseptic area and methods of prevention, clean area classification. Principles and methods of different microbiological assay. Methods for standardization of antibiotics, vitamins and amino acids. Assessment of a new antibiotic and testing of antimicrobial activity of a new substance. Safety profile of drugs (Pyrogenecity, Toxicity –hepato, - nephro, -cardio and -neurotoxicity) ;Toxicological evaluation of drug: LD50, Acute, subacute and chronic toxicity ;Mutagenecity (Ames test, micronucleus test), Carcinogenicity and Teratogenecity

5 Cell Culture

15 20

Course Content		rse Content T - Teaching Hours		W - Weightag		
Sr.	Topics		Т	W		
		nal cells in culture, general procedure for cell culture, Primary, established and transform cell cultures in pharmaceutical industry and research. Molecular principles of drug target				
	system in gene		ting, brug denver	' y		
				400		

Total	60	100
-------	----	-----

Suggested Distri				
Level	Create			
Weightage	40	30	15	15

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:				
CO1	Define antimicrobial agents, their chemical nature, and mechanism of action and basis of resistance of microbes to these antimicrobials, formulations involving different antimicrobials, stabilization of formulations.				
CO2	Explain different types of disinfectants/antiseptics and their specific uses, and evaluation of their bactericidal and bacteriostatic actions; basic knowledge of cell cultures				
CO3	Explain the cell culture technique and their application in pharmaceutical industry.				
CO4	Design the aspect area and laminar air flow				
CO5	Developed practical skills for testing pharmaceutical products for sterility testing and pyrogenicity testing using different methods				

Reference Books

1.	Pharmaceutical Microbiology (TextBook) By W.B. Hugo and A.D. Russel: Blackwell Scientific publications, Oxford London.				
2.	A Manual of pharmaceutical biology practical (TextBook) By S.B.Gokhale, C.K.Kokate and S.P.Shriwastava				
3.	Pharmaceutical Microbiology (TextBook) By Malcolm Harris, Balliere Tindall and Cox				
4.	Pharmaceutical Microbiology (TextBook) By Kar Ashutosh. New Age International Publishers Limited 1st., Pub. Year 2019				

List of	f Practical			
1.	Microbial Examination of sterile and Non Sterile Products			
2.	Microbial Examination of sterile and Non Sterile Products			
3.	Test for Confirmation of Labeled LAL Reagent Sensitivity (LAL Test)			
4.	Antibiotic Potency Testing			
5.	Bioburden Estimation for Medical Devices			
6.	Determination of D value, Z value for heat sterilization in pharmaceuticals.			
7.	Chemical / Microbiological methods for the determination of Penicillin, Streptomycin, Griseofulvin			
8.	Prediction of binding site of macromolecules using MEDsuMo software			

Course	Bachelor of Science (B.Sc.) Semester - 4	Ļ
Type of Course	Type of Course Generic Elective Courses	
Prerequisite 05010101-T - MICROBIAL WORLD AND PRINCIPLES OF MICROBIOLOGY		
Course Objective	 To Understand the airborne microorganism To operate the sampling process To examine the analysis of water, air and soil To interpret the control of environmental pollution To understand the chemical and physical parameter of control measure 	

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory Marks		Practical Marks		Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	-	-	100

Course Content		T - Teaching Hours W -	Weig	htage			
Sr.	Topics		т	w			
1	Aero- microbio	logy	12	20			
	Aero- microbiology: Bioaerosols, Air borne microorganisms (bacteria, Viruses, fungi) and their impact on human health and environment, significance in food and pharma industries and operation theatres, allergens.						
2	Bioaerosol		12	20			
	Bioaerosol sam characteristics	pling, air samplers, methods of analysis, CFU, culture media for bacteria and fungi, Identification					
3	Water- microbi	iology	12	20			
	Water- microbiology: Water borne pathogens, water borne diseases. Sample Collection, Treatment and safety of drinking (potable) water, methods to detect potability of water samples: (a) standard qualitative procedure: presumptive/MPN tests, confirmed and completed tests for faecal coliforms (b) Membrane filter technique and (c) Presence/absence tests						
4	Control Measu	res	12	20			
	Control Measures: Fate of bioaerosols, inactivation mechanisms – UV light, HEPA filters, desiccation, Incineration. Precipitation, chemical disinfection, filtration, high temperature, UV light						
5	Soil- microbiol	Dgy	12	20			
	Soil- microbiology: Soil borne pathogens, soil borne diseases, Sampling of soil, sample collection and analysis. Isolation and identification of pathogens. Soil testing methods. Soil treatment						
		Total	60	100			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy					
Level	Remembrance	Understanding	Application	Analyze	
Weightage	20	40	20	20	

Cour	Course Outcomes					
At the	At the end of this course, students will be able to:					
CO1	1 Describe the concept of aerosol microbiology					
CO2	Execute the sapling process					
CO3	3 Good understanding and skills of the analysis of air, water and soil					
CO4	Analysis of water, air and soil contribute to control of environmental pollution.					
CO5	Explain the chemical and physical parameter of control measures					

Reference Books

1.	A text book of microbiology (TextBook) By Chakraborty P New Central Book Agency, Pub. Year 2012
2.	A textbook of microbiology (TextBook) By R C Dubey
3.	Agricultural Microbiology (TextBook) By Rangaswamy, G. "Bagyaraj 2nd, Pub. Year 1993
4.	A textbook of microbiology (TextBook) By R C Dubey Sultan Chand, Pub. Year 2012
5.	Experimental Microbiology (TextBook) By Rakesh J Patel
6.	Essentials of Practical Microbiology (TextBook) By Purba Sankar Sastry, Sandhya Bhat K, Pub. Year 2018

List of Practical

1.	To study the microbiological analysis of air						
2.	To study the microbiological analysis of water						
3.	. To study the microbiological analysis of soil						
4.	Isolation of bacteria from contaminated water sample.						
5.	Isolation and cultivation of symbiotic and non-symbiotic nitrogen fixing bacteria, Actinomycetes and Fungi (Mucor, Rhizophus, Aspergillus and Penicillium) from soil.						
6.	Isolation and cultivation of yeast						

Course	Bachelor of Science (B.Sc.)	Semester - 1
Type of Course	Ability Enhancement Compulsory Course	
Prerequisite		
Course Objective	To develop presentation and oratory skills to become ready for job	

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme		
				Theory Marks		Practical Marks		Total	
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks	
3	0	0	3	70	30			100	

Cour	se Content	T - Teaching Hours W -	Wei	ghtage		
Sr.	Topics		т	w		
1	Unit-1		10	25		
	Interview and I	ts Types, Preparation for Interview, Do's and Don'ts of				
	Interview, Self-Introduction, Rejections Handling, Selection Tests, Different					
	Types Of Select	tion Tests.				
2	Unit-2		12	25		
		kills, know Your Audience, Guidelines For An Effective, Presentation, Common Flaws and Overcoming , Presentation Tips, Group discussion, Debate, Telephone and Email Etiquettes.	g The	m,		
3	Unit-3		12	25		
		prate Communication Skills, Interpersonal Skills, Life 11 25,Management Skills, Negotiation & Co Leadership Skills, Teamwork	nflic	t		
4	Unit-4		11	25		
		ess meetings, Fundamentals Of Oral Communication, Ethics in Corporate Communication, Role Of Cu y; International Communication, Persuasive Communication	lture	in		
		Total	45	100		

Suggested Distri	Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level Understanding Application								
Weightage	80	20						

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the end of this course, students will be able to:

CO1 Understand the purpose and structure of interviews, grasp the importance of preparation, body language, and communication skill during an interview.

Subject Syllabus

05000401-T - Verbal Communication

02	Explain effective techniques for creating and delivering presentation the ability to organize information coherently and technology to enhance presentation
CO3	Apply principle of effective corporate communication in various contexts, demonstrate negotiation skill in a corporate setting and utilize strategies for successful communication and negotiation
CO4	Evaluate the effectiveness of communication strategies in various situation and develop and implement communication plans based on an analysis of communication needs.

Course	Bachelor of Science (B.Sc.) Semester - 5						
Type of Course	Core Courses						
Prerequisite	05010404-T - MICROBIOLOGICAL ANALYSIS OF AIR, WATER & SOIL						
Course Objective	 To understand the key features of the physiology and behavior of bacteria. To understand the underlying mechanisms governing various physiological and metabolic features of prokaryotes. To provide basic knowledge to deal with the study of genetic, metabolic strategies and ecology of microorganisms. To understand the energetics and biochemistry of metabolic pathways. To provide the knowledge of transport mechanisms for the uptake of nutrients, bacterial growth, and the diversity of prokaryotes 						

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory	/ Marks	Practica	l Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	-	4	70	30	-	-	100

Course Content T - Teaching Hours							
Sr.	Topics		Т	w			
1	Bacterial grow	th	12	20			
	growth rate, sy (psychrophiles, and water activ	rowth, measurement of microbial growth, Batch culture, Continuous culture, generation time and s inchronous growth, diauxic growth curve. Microbial growth in response to environment -Temperatu mesophiles, thermophiles, extremophiles, thermodurics, psychrotrophs), pH (acidophiles, alkaliphile vity (halophiles, xerophiles, osmophilic), Oxygen (aerobic, anaerobic, microaerophilic, facultative aer probe),barophilic.	re es), so				
2	Microbial nutri	ition for growth	12	20			
	Chemolithohet facilitated diffu Iron uptake.	th in response to nutrition and energy – Autotroph/Phototroph, heterotrophy, Chemolithoautotrop erotroph, Chemoheterotroph, Chemolithotroph, photolithoautotroph, Photoorganoheterotroph. Pa ision. Primary and secondary active transport, concept of uniport, symport and antiport Group trans	ssive locat	ion			
3	Microbial Phys	iology	12	20			
	Concept of aerobic respiration, anaerobic respiration and fermentation Sugar degradationpathways i.e. EMP, ED, Pentose phosphate pathway TCA cycle. Electron transport chain: components of respiratory chain, comparison of mitochondrial and bacterial ETC, electron transport phosphorylation, uncouplers and inhibitors. Fermentation - Alcohol fermentation and Pasteur effect; Lactate fermentation (homofermentative and heterofermentative pathways), conceptof linear and branched fermentation pathways.						
4	Introduction to	o aerobic and anaerobic chemolithotrophy	12	20			
	Introduction to aerobic and anaerobic chemolithotrophy with an example each. Hydrogen oxidation (definition and reaction) and methanogenesis (definition and reaction). Introduction to phototrophic metabolism - groups of phototrophic microorganisms, anoxygenic vs. oxygenic photosynthesis with reference to photosynthesis in green bacteria, purple bacteria and Cyanobacteria.						

5	Anaerobic respiration	12	20
	Anaerobic respiration with special reference to dissimilatory nitrate reduction(Denitrification; nitrate/nitrite and nitrate/ammonia respiration; fermentative nitrate reduction). Introduction to biological nitrogen fixation Ammonia assimilation. Assimilatory nitrate reduction, dissimilatory nitrate reduction, denitrification.	I	
	Total	60	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy					
l evel	Remembrance	Understanding	Analyze	Evaluate	

Level	Remembrance	Understanding	Analyze	Evaluate
Weightage	20	50	10	20

Cour	rse Outcomes				
At the	At the end of this course, students will be able to:				
CO1	Define basic concepts of microbial physiology				
CO2	Describe the bacterial cell components and its function role in the cell.				
CO3	Evaluate the importance of central pathways of carbohydrate metabolism for microbial physiology				
CO4	Elaborate on various pathways of fermentation in microbes				
CO5	Discuss the classification of chemolithotrophs and phototrophs along with mechanisms of energy production and cellular carbon synthesis.				

Refe	erence Books
1.	Advances in microbial physiology. (TextBook) By Poole, R. K. (1998). Academic Press.
2.	Microbial Processes and Products (TextBook) By Barredo, J. L. Humana Press, New Jersey. (2005)
3.	Essentials of Practical Microbiology (TextBook) By Purba Sankar Sastry, Sandhya Bhat K, Pub. Year 2018
4.	Bacterial metabolism (TextBook) By Gottschalk Springer

List of	Practical	
1.	To study and plot the growth curve of <i>E.coli</i> by turbidometric and standard plate count methods.	
2.	Calculations of generation time and specific growth rate of bacteria from the graph plotted with the given data.	
3.	Effect of temperature on growth of <i>E.coli</i> .	
4.	Effect of pH on growth of <i>E.coli</i> .	
5.	Effect of carbon and nitrogen sources on growth of <i>E.coli</i> .	
6.	Effect of salt on growth of <i>E.coli</i> .	
7.	Demonstration of alcoholic fermentation.	
8.	Demonstration of the thermal death time and decimal reduction time of <i>E.coli</i> .	

Course	Bachelor of Science (B.Sc.) Semester - 5
Type of Course	Core Courses
Prerequisite	05000102-T - ENVIRONMENTAL SCIENCE
Course Objective	 To understand the diverse roles and environments of microbes, including soil, water, air, human and animal bodies, and extreme habitats. To explore the processes and microbial involvement in various biogeochemical cycles, such as the carbon, nitrogen, phosphorus, sulfur, iron, and manganese cycles. To examine the history, significance, and developments in microbial ecology, including microbial interactions and their roles in ecosystems. To learn the methods of waste management and the principles of microbial degradation of common pollutants, including pesticides, hydrocarbons, metals, and biosurfactants.

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory	/ Marks	Practica	l Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	0	0	4	70	30	-	-	100

Cou	rse Content	T - Teaching Hours W - W	veig	ntag
Sr.	Topics	·	т	W
1	Introduction of	environment and microbes 1	12	20
	 Aquatic Atmosp Animal Extreme 	ial Environment: Soil profile and soil microflora. Environment: Microflora of fresh water and marine habitats here: Aero microflora and dispersal of microbes. Environment: Microbes in/on human body (microbiomes) & animal (ruminants) body. Habitats: Extremophiles: Microbes thriving at high & low temperatures, pH, high hydrostatic & osmot es, salinity, & low nutrient levels.	tic	
2	Biogeochemica	cycles 1	12	20
		cycle: Microbial degradation of cellulose, hemicelluloses, lignin and chitin n cycle: Nitrogen fixation, ammonification, nitrification, denitrification and nitrate reduction		
	PhosphSulphur	orus cycle: Phosphate immobilization and solubilisation. cycle: Microbes involved in sulphur cycle emental cycles: Iron and manganese.		
3	PhosphSulphur	orus cycle: Phosphate immobilization and solubilisation. cycle: Microbes involved in sulphur cycle emental cycles: Iron and manganese.	12	20
3	 Phosph Sulphur Other e Microbial ecolo History, Kluyver in decol Biologic Amensa Microbe biofertil 	brus cycle: Phosphate immobilization and solubilisation. cycle: Microbes involved in sulphur cycle emental cycles: Iron and manganese. gy significance and developments in the field of microbial ecology. Contributions of Beijerinck, Winograd Van Niel, Martin Alexander, Selman A. Waksman Structure and function of ecosystems. Microbial succ nposition of plant organic matter. al Interaction: A. Microbe– Microbe Interactions- Mutualism, Synergis, Commensalism, Competition, lism, Parasitism, Predation, Biocontrol agents. Plant Interactions Roots, Aerial Plant surfaces, Biological Nitrogen fixation (symbiotic/nonsymbiotic - zers) Animal Interactions - Role of Microbes in Ruminants, Nematophagus fungi, Luminescent bacteria as	dsky ces	 ,

20

12

- Solid Waste management: Sources and types of solid waste, Methods of solid waste disposal (composting and sanitary landfill).
 - Liquid waste management: Composition and strength of sewage (BOD and COD), Primary, secondary (oxidation ponds, trickling filter, activated sludge process and septic tank) and tertiary sewage treatment.

5 Principles and degradation of common pollutant

-

Cou	Course Content T - Teaching Hours W - Weig				
Sr.	Topics		т	W	
		hydrocarbons, oil spills) c (metals) matter			
		Total	60	100	

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy					
Level	Remembrance	Understanding	Application	Analyze	Create
Weightage	0	60	30	10	0

Cour	se Outcomes					
At the	t the end of this course, students will be able to:					
CO1	Describe the diversity and roles of microbes in various environments, including soil, water, air, human and animal bodies, and extreme habitats.					
CO2	Explain the roles of microbes in biogeochemical cycles, including the carbon, nitrogen, phosphorus, sulfur, iron, and manganese cycles.					
CO3	Summarize the in ecosystems.	history, significance, and developments in microbial ecology, including microbial interactions and their roles				
CO4	Apply the meth	ods and processes of solid and liquid waste management, including the stages of sewage treatment.				
CO5	Describe the mi	icrobial degradation of common pollutants, including pesticides, hydrocarbons, metals, and biosurfactants.				

Refe	rence Books	
1.	An introduction to environmental biotechnology (TextBook) By Wainwright, M. Springer Verlag, New York., Pub. Year 1999	
2.	De, A. K. (2012), Environmental Chemistry, New Age International Pvt, Ltd, New Delhi (TextBook) By De, A.K.	
3.	Environmental Biology , (TextBook) By Agarwal, K.C. 2001 Nidi Publ. Ltd. Bikaner.	
4.		Biotechnology Theory and Application (TextBook) EVANS AND JUDITH C. FURLONG WILEY-BLACKWELL SECOND EDITION
5.		Engineering (TextBook) and G.A. Sincero, Prentice Hall of India, New Delhi.

6. Text Book of Environmental Biotechnology (TextBook)

By Mohapatra, P. K | I K International., Pub. Year 2006

List of	ist of Practical					
1.	Qualitative and quantitative examination of water					
2.	Qualitative and quantitative examination of sewage					
3.	Estimation of soil microflora (Bacteria, yeast and Molds)					
4.	. Isolation of azotobacter					
5.	Isolation of Rhizobium from root nodules					
6.	Isolation of phosphate solubilizing microorganism					
7.	Estimation of air micro flora					
8.	Isolation of Xanthomonas citri from citrus canker					
9.	Assessment of Antibiotic Resistance in Environmental Isolates					
10.	Assessment of Heavy Metal Tolerance in Environmental Isolates					

Course	Bachelor of Science (B.Sc.) Semester - 5
Type of Course	Core Courses
Prerequisite	05010304-T - ADVANCED INSTRUMENTATION: PRINCIPLES AND APPLICATIONS
Course Objective	 To complete the module, students will be able to demonstrate a knowledge and understanding of: Antibiotics types, range and production of different types of antibiotics. To understanding of immune system and development and production of various kinds of vaccines, vitamins and proteins. To analyze the industry-academic perspective To describe the various types of fermenter and its application To learn the various application

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
					Theory Marks		Practical Marks	
Lecture	Tutorial	Tutorial Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Total Marks
4	-	2	5	70	30	-	-	100

Cour	ourse Content T - Teaching Hours W - Weightage									
Sr.	Topics		т	w						
1	intrduction of i	ndustrial microbiology	12	20						
	Brief history and developments in industrial microbiology. Sources of industrially important microbes and methods for their isolation, preservation and maintenance of industrial strains, strain improvement, Crude and synthetic media; molasses, corn- steep liquor, sulphite waste liquor, whey, yeast extract and protein hydrolysates.									
2	2 Types of fermentation									
	Types of fermentation processes - Solid-state and liquid-state (stationary and submerged) fermentations; batch, fed-batch (e.g. baker's yeast) and continuous fermentations. Components of a typical bio-reactor, Types of bioreactors-Laboratory, pilot- scale and production fermenters, constantly stirred tank and air-lift fermenters, Measurement and control of fermentation parameters - pH, temperature, dissolved oxygen, foaming and aeration.									
3	Down-stream p	processing	12	20						
		processing; Cell disruption, filtration, centrifugation, solvent extraction, precipitation, lyophilization a al cells as food. SCP -mushroom cultivation	nd sp	oray						
4	Microbial prod	uction of industrial products	12	20						
	Microbial production of industrial products (micro-organisms involved, media, fermentation conditions, downstream processing and uses)- Citric acid, ethanol, penicillin, glutamic acid, Vitamin B12. Enzymes (amylase, protease, lipase) wine, beer.									
5	Immobilization		12	20						
	Methods of immobilization, advantages and applications of immobilization, large scale applications of immobilized enzymes (glucose isomerase and penicillin acylase). Role of Microbes in Medicine and textile industry.									
		Total	60	100						

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy									
Level	Remembrance	Understanding	Application						

Weightage	20	50	30
-----------	----	----	----

Cour	se Outcomes							
At the	At the end of this course, students will be able to:							
CO1	CO1 Understand the ecological and environmental niches where these microbes can be found.							
CO2	Apply knowledge of fermentation processes and bioreactor design to real-world industrial applications.							
CO3	Understand the	principles and applications of precipitation in downstream processing.						
CO4	Explore the various uses and applications of these industrial products.							
CO5	Explain the adva	antages of immobilization and its applications in industry.						

Reference Books

1.	Biotechnology: a textbook of industrial microbiology (TextBook) By Crueger, Wulf, Anneliese Crueger, Thomas D. Brock, and Thomas D. Brock, Pub. Year 1990
2.	Basic Industrial Biotechnology (TextBook) By Reddy SM, Reddy RS, Babu GN New Age International Publication
3.	Industrial Microbiology (TextBook) By Prescott and Dunn 4th edition , CBS Publishers & Distributors, Delhi
4.	Industrial Microbiology (TextBook) By A.H. Patel Laxmi Publication 2nd Edition
5.	Industrial microbiology (TextBook) By A H Patel Macmillan Publishers, New Delhi 2012
6.	Industrial microbiology and biotechnology. Singapore (TextBook) By Verma, Pradeep, Pub. Year 2022
7.	Microbiology Industrial Microbiology Tata McGraw Hill edn (TextBook) By Tata McGraw Hill edn

List of Practical

1.	Screening of antibiotic producing microorganism					
2.	Primary screening of amylase producing microorganisms					
3.	Primary screening of protease producing microorganisms					
4.	Primary screening of cellulase producing microorganisms					
5.	Primary screening of organic acid producing microorganisms					
6.	Production of enzymes-amylase, protease and cellulase					
7.	Production of ethanol					
8.	Production of citric acid					
9.	Sugar estimation's by cole methods					
10.	Demonstration of working of fermentor					

Course	Bachelor of Science (B.Sc.) Semester - 5
Type of Course	Generic Elective Courses
Prerequisite	05010402-T - MICROBIAL GENETICS
Course Objective	 To understand the aspects of molecular biology and microbial genetics To emphasize the concept of genetic material through various process To understand the concepts of cellular function To get the knowledge of gene expression To identify the genetic regulatory mechanism at different levels

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory Marks		Practical Marks		Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	-	-	100

Cour	se Content	T - Teaching Hours W -	Weig	shtage			
Sr.	Topics		т	w			
1	Structures of D	DNA and RNA/Genetic Material	12	20			
	and renaturation Bidirectional ar	NA and RNA/Genetic Material: DNA structure, Salient features of double helix, Types of DNA, denat on, topoisomerases; Organization of DNA Prokaryotes, Viruses, Eukaryotes. RNA Structure. Replicati nd unidirectionalreplication,semi-conservative, semi discontinuousreplicationMechanismof DNA rep proteins involved in DNA replication –DNA polymerases, DNA ligase, primase, telomerase – for replica	on of olicati	DNA: on:			
2	Gene Expressio	on	12	20			
	Gene Expression:Transcription - Definition, promoter - concept and strength of promoter. Transcriptional Machinery and Mechanism of transcription. Translation - Genetic code, Translational machinery, Charging of tRNA, aminoacyl tRNAsynthetases, Mechanisms of initiation, elongation and termination of polypeptides.						
3	Regulation of g	gene Expression	12	20			
	withexamplesfi	gene expression: Principles of transcriptional regulation, regulationat initiation romlacandtrpoperons.Mutation:Mutationsandmutagenesis:Definitionand types of Mutations; Physi gens; Uses of mutations, DNA repair mechanisms	cal an	d			
4	Mechanisms of	f Genetic Exchange	12	20			
		f Genetic Exchange:Transformation - Discovery, mechanism of natural competence Conjugation - Dis fr and F' strains Transduction - Generalized transduction, specialized transduction.	cover	γ,			
5	Plasmids and T	Transposable Elements	12	20			
	elements – Inse	ransposable Elements:Property and function of plasmids, Types of plasmids. Prokaryotic transposab ertion Sequences, composite and non-composite transposons, Replicative and Non replicative transp osons and transposition.		on,			
		Total	60	100			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level	Remembrance	Understanding	Analyze	Evaluate			

Weightage	50
-----------	----

Cour	Course Outcomes					
At the	At the end of this course, students will be able to:					
CO1	Understand the molecular aspects of the biology					
CO2	Emphasize the concepts of central dogma of molecular biology spanning from DNA Replication till Protein Synthesis and Reverse transcription					
CO3	Helps in understanding the concepts of cellular function					
CO4	Gain knowledge in gene concepts and genetic code, gene expression, gene regulation and also learn about mutation					
CO5	Identify and distinguish genetic regulatory mechanism at different levels					

Reference Books

1.	Biotechnology-Applying the Genetic Revolution. (TextBook) By Clark DP and Pazdernik NJ. (2009). Elsevier Academic Press, USA.
2.	Griffiths, A.J.F., J.H. Miller, Suzuki, D.T., Lewontin, R.C. and Gelbart, W.M. (2009). An introduction to genetic analysis. IX Edition. Freeman & Co., N.Y., USA (TextBook)
3.	Genetics (TextBook) By singh, B.D, kalyani Publishers 3ed, Pub. Year 2019
4.	Neural Networks, Fuzzy logic and Genetic algorithms (TextBook) By S. Rajasekaran, G. A. Vijayalakshmi Pai PHI publication
5.	Objective Genetics (TextBook) By Singh, Phundan Kalyani Publishers 4ed.

List of Practical

1.	Study of different types of DNA and RNA using micrographs and model / schematic representations		
2.	2. Study of semi-conservative replication of DNA through micrographs / schematic representations		
3.	Estimation of salmon sperm/calf thymus DNA using colorimeter (diphenylamine re agent) or UV spectrophotometer (A260measurement)		
4.	Resolution and visualization of DNA by Agarose Gel Electrophoresis		
5.	Resolution and visualization of proteins by Polyacrylamide Gel Electrophoresis (SDS-PAGE)		
6.	Study the effect of chemical (HNO2) and physical (UV) mutagens on bacterial cells		
7.	Study survival curve of bacteria after exposure to ultraviolet (UV)light		
8.	Demonstration of Bacterial Transformation and calculation of transformation efficiency		

Course	Bachelor of Science (B.Sc.) Semester			
Type of Course	Core Courses			
Prerequisite				
Course Objective	 To get knowledge about good laboratory practices. To know the about culture and microscopic methods to determining microbes in food / pharmaceutica samples. 			
	 To understand about molecular methods to determine microbes in samples. To learn about food safety and microbial standards. 			

т	eaching Scheme (Contact Hours)			Exa	mination Sch	eme	
				Theory	Theory Marks		al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	-	4	70	30	-	-	100

Cour	se Content	T - Teaching Hours W -	Weig	htage
Sr.	Topics		т	w
1	Microbiologica	l Laboratory and Safe Practices	12	20
	practices. Biosa	l Laboratory and Safe Practices: Good laboratory practices - Good laboratory practices, Good microb afety cabinets – Working of biosafety cabinets, using protective clothing, specification for BSL- 1, BSL aazardous waste – Methodology of Disinfection, Autoclaving & Incineration	-	
2	Determining M	licrobes in Food / Pharmaceutical Samples	12	20
	probable numb	icrobes in Food / Pharmaceutical Samples: Culture and microscopic methods - Standard plate count pers, Direct microscopic counts, Biochemical and immunological methods: Limulus lysate test for end perility testing for pharmaceutical products.		
3	Molecular met	hods to determine microbes in samples	12	20
	culture techniq	hods to determine microbes in samples- Nucleic acid probes, PCR based detection, biosensors. Enric ue, Detection of specific microorganisms - on XLD agar, Salmonella Shigella Agar, Manitol salt agar, B r, Saboraud Agar.		
4	Ascertaining m	icrobial quality	12	20
	-	icrobial quality of milk by MBRT, Rapid detection methods of microbiological quality of milk at milk c LO min Resazurin assay)	ollect	tion
5	HACCP for Foo	d Safety and Microbial Standards	12	20
		d Safety and Microbial Standards: Hazard analysis of critical control point (HACCP) - Principles, flow d robial Standards for Different Foods and Water – BIS standards for common foods and drinking wat	-	ms,
		Total	60	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy						
Level	Understanding	Application				
Weightage	40	60				

vary slightly from above table.

Cour	Outcomes				
At the	t the end of this course, students will be able to:				
CO1	pply knowledge of good laboratory practices in practical				
CO2	Apply knowledge of culture and microscopic methods to determining microbes in food / pharmaceutical samples.				
CO3	Understand molecular methods to determine microbes in samples				
CO4	Apply knowledge of by ascertaining microbial quality of milk				
CO5	xplain the concept of HACCP for food safety and microbial standards.				
Refe	nce Books				
1.	ood microbiology (TextBook)				

1.	Food microbiology (TextBook) By Frazier, William C. McGraw Hill Education (India) Pvt Ltd, New Delhi 2013
2.	The Food Pharmacy (TextBook) By Jean Carper, Simon & Schuster
3.	2000 Functional Foods and Dietary Supplements: Safety, Good Manufacturing Practice (GMPs) and Shelf Life Testing in Essentials of Functional Foods (TextBook)
4.	Essentials of food and nutrition (TextBook) By Swaminathan M Bappco, Bangalore 2003
5.	Food and beverage : Management and cost control (TextBook) By Negi jagmohan Kanishka, New delhi 1999

Course	Bachelor of Science (B.Sc.) Semester - 6
Type of Course	Core Courses
Prerequisite	05010404-T - MICROBIOLOGICAL ANALYSIS OF AIR, WATER & SOIL
Course Objective	 To understand the basic knowledge of immunology with particular reference to the main differences in animal species. Acquisition of basic knowledge of bio-security and veterinary microbiology with particular reference to the pathogenic activities of bacteria and virology. The main microbiological and immunological techniques of classical and innovative diagnostics applied in veterinary will be presented. The course aims to improve the student's skills and critical analysis skills, providing the basis for an experimental design in the field of veterinary microbiology and immunology

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory Marks		Practical Marks		Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	50	-	150

Course Content		T - Teaching Hours W -	Weig	htage				
Sr.	Topics		т	w				
1	Normal microf	ora of the human body	10	20				
	Importance of normal microflora, normal microflora of skin, throat, gastrointestinal tract, urogenital tract. Host-patho interaction: Definitions - Infection, Invasion, Pathogen, Pathogenicity, Virulence, Toxigenicity, Carriers and their types Opportunistic infections, Nosocomial infections. Transmission of infection, Pathophysiologic effects of LPS. Collection, transport, and culturing of clinical samples, principles of different diagnostic tests (ELISA, Immunofluorescence, Agglut based tests, Complement fixation, PCR, DNA probes).							
2	List of diseases	of various organ systems and their causative agents.	10	20				
	Mycobacterium	de of transmission, prophylaxis and control of the diseases caused by Streptococcus pyogenes, n,Haemophilusinfluenzae, tuberculosis, Bacillus anthracis, Clostridium tetani, Treponemapallidum, Cl e viruses causing Polio, Herpes, Hepatitis, Dengue, AIDS, influenza and Japanese encephalitis.	ostri	dium				
3	Animal Disease	S	10	20				
		Il diseases with respect to etiology, symptoms, mode of transmission, prophylaxis and control: FMD, bovine tuberculosis, Marek's, ranikhet, brucellosis, distemper.	swir	ie flu,				
4	Mycoses		10	20				
	Occurrence, ha	ses: Tineapedis (Athlete's foot) Systemic mycoses: Histoplasmosis Opportunistic mycoses: Candidiasis. itat, morphology and reproduction of Protozoa. Structure and reproduction of important Protozoans- dia, Trichomonas, Leishmania, Trypanosoma and Plasmodium.						
5	Immune system	n	10	20				

Structure and function of the cells, tissues and organs of immune system. Types of immunity - Humoral and cell-mediated, innate, acquired immunity. Complement system – function and pathways. Antigens and Antibodies: types, properties. Haptens, adjutants, Immunoglobulins: Structure types, Properties and their function - Theory of antibody production. Antigen-Antibody Interactions, Agglutination, Precipitation, Complement fixation test. Hypersensitivity reactions; IgE mediated Type I Hypersensitivity, Antibody-mediated cytotoxic (Type II) Hypersensitivity, Immune complex mediated (Type II) Hypersensitivity, DTH mediated (Type IV) Hypersensitivity.

Total 50 100

Suggested Distri				
Level	Remembrance	brance Understanding Applica		Analyze
Weightage	25	45	15	15

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:							
CO1	Understood the basic and general concepts of causation of disease by the pathogenic microorganisms and the various parameters of assessment of their severity including the broad categorization of the methods of diagnosis.							
CO2	Developed a thorough understanding of common bacterial, viral, fungal, parasitic diseases of human being including some very important diseases of the animals also.							
CO3	Conceptualized the protective role of the immune system of the host and developed an understanding of the basic components as well as the mechanisms underlying the immune system and its response to pathogenic microorganisms.							
CO4	Are able to conduct experiments for growing common bacteria in different microbiological media, antibiotic sensitivity determination and antigen antibiody reaction (precipitation test in the agarose).							
CO5	Enlist the different types of animal diseases.Enlist the different types of animal diseases.							

Reference Books

nen	
1.	Microbiology By Michel J Pelczar Jr. Tata MacGraw Hill, New Delhi 1991
2.	Microbiology By Michel J Pelczar Jr. Tata MacGraw Hill, New Delhi 1991
3.	Microbiology By Michel J Pelczar Jr. Tata MacGraw Hill, New Delhi 1991
4.	Immunology and immunotechnology By Ashim K. Chakravarty Oxford university press, New Delhi 2012
5.	Immunology and immunotechnology By Ashim K. Chakravarty Oxford University Press, New Delhi 2015
6.	Industrial microbiology By A H Patel Macmillan Publishers, New Delhi 2012
7.	Industrial microbiology By A H Patel Macmillan Publishers, New Delhi 2012
8.	A textbook of microbiology By R C Dubey Sultan Chand, Pub. Year 2012

9.	Practical microbiology
	By Dubey R C Sultan Chand, Pub. Year 2008
10.	Food microbiology By Frazier, William C. McGraw Hill Education (India) Pvt Ltd, New Delhi 2013
11.	Basic Immunology : Functions and disorders of the immune system By Abbas, Abul K. Publisher Information : Elsevier, Philadelphia 2014
List o	f Practical
	1. Identify bacteria (any three of E.coli, Salmonella, Pseudomonas, Staphylococcus, Bacillus) using laboratory strains on the

		catalase tests. Study of composition and use of important differential media for identification of bacteria: EMB Agar, McConkey agar,
	1. Identify bacteria (any three of E.coli, Salmonella, Pseudomonas, Staphylococcus, Bacillus) using laboratory strains on the basis of cultural, morphological and biochemical characteristics: IMViC, TSI, nitrate reduction, urease production and	

2.	Mannitol salt agar, Deoxycholate citrate agar, TCBS
3.	Study of bacterial flora of skin by swab method.
4.	Perform antibacterial sensitivity by Kirby-Bauer method.
5.	Determination of minimal inhibitory concentration (MIC) of an antibiotic.
6.	Study symptoms of the diseases with the help of photographs: Polio, anthrax, herpes, chickenpox, HPV warts, AIDS (candidiasis), dermatomycoses (ringworms).
7.	Study of various stages of malarial parasite in RBC using permanent mounts.
8.	Blood Group test

9. Isolation of fungus

Course	Bachelor of Science (B.Sc.)	Semester - 6	
Type of Course	Core Courses		
Prerequisite 05010404-T - MICROBIOLOGICAL ANALYSIS OF AIR, WATER & SOIL			
Course Objective	 To get the important knowledge of food safety, production, processing, preservation, and To describe the microbes such as bacteria, molds, and yeasts are employed for the foods p and food ingredients such as production of wine, beer, bakery, and dairy products. To understand the current trends and concepts related to Microbiology of food and other products. Gives an insight into various types of food borne diseases and their prevention To understand the current trends and concepts related to Microbiology of food and other products. Gives an insight into various types of food borne diseases and their prevention 	production dairy	

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory	/ Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	50	-	150

Course Content		T - Teaching Hours W -	Weig	shtage				
Sr.	Topics		т	w				
1	History of Agric	cultural Microbiology	12	20				
	History of Agricultural Microbiology; Microbes and their importance in maintenance of soil, Biogeochemical cycles, role microbes in maintaining the fertility of soil. Bio fertilizers – Bacterial, - Azotobacter and vermiform compost. Soil microorganism -association with vascular plants- phyllosphere, Rhizobium, Rhizoplane associative nitrogen fixation. BiofertilizersCyanobacterial and Azolla.							
2	Food microbiol	ogy	12	20				
	Intrinsic and extrinsic factors that affect growth and survival of microbes in foods, natural flora and source of contamina of foods in general. Principles, Spoilage of vegetables, fruits, meat, eggs, milk and butter, bread, canned Foods. Principle food preservation: temperature, canning, drying, irradiation, microwave processing and aseptic packaging, chemical methods of food preservation: salt, sugar, organic acids, SO2, citrates, benzoates,nitrite and nitrates etc.							
3	Dairy microbio	logy	12	20				
	foods: dosa, sa	Iltures, fermented dairy products: yogurt, acidophilus milk, kumiss, kefir, dahi and cheese, other fer uerkraut, soy sauce and tampeh, Probiotics: Health benefits, types of microorganisms used, probiot rket. Utilization and disposal of dairy by-product – whey.						
4	Food borne dis	eases	12	20				
	Food borne diseases (causative agents, foods involved, symptoms and preventive measures)- Food intoxications: Staphylococcus aureus, Clostridium botulinum and mycotoxins; Food infections: Bacillus cereus, Vibrio parahaemolyticus, Escherichia coli, Salmonellosis, Shigellosis, Yersinia enterocolitica, Listeria monocytogenes and Campylobacter jejuni.							
5	Food sanitation	n and control	12	20				
Food sanitation and control; HACCP, Indices of food sanitary quality and sanitizers. Cultural and rapid detection methods of food borne pathogens in foods and introduction to predictive microbiology. Genetically modified foods, Nutraceuticals, Biosensors in food, Applications of microbial enzymes in dairy industry [Protease, Lipases].								
		Total	60	100				

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy

Level	Remembrance	Understanding	Application	Analyze
Weightage	30	50	10	20

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	end of this course, students will be able to:
CO1	Developed a clear understanding of the multifarious roles of microorganisms in soil, in association with plants and thus in the field of agriculture.
CO2	Are able to describe the role of microorganisms in the production of food, its spoilage, including their role in homemade fermented foods.
CO3	Are able to identify the role of microorganisms in the causation of the diseases and how to protect against food-borne pathogens.
CO4	Developed experimental skills for testing the milk and different foods for the presence of microorganisms.

Reference Books

1.	Food and beverage costing By Negi jagmohan Himalaya Publishing House, New delhi 2001
2.	Applied dairy microbiology. By Marth, Elmer H Marcel Dekker, New York 2001
3.	Food microbiology By Frazier, William C. McGraw Hill Education (India) Pvt Ltd, New Delhi 2013
4.	Food Microbiology By Frazier, William C. McGraw Hill Education (India) Private Limited, New Delhi 2014
5.	Fundamentals Of Agriculture By Katyayan, Arun, Kushal Publications and Distributors , Varanasi: 2019
6.	An introduction to Food and beverage Studies By Magris Marzia Global books, New delhi 2001
7.	Essentials of food and nutrition By Swaminathan M Bappco, Bangalore 2003

List of Practical

MBRT of milk samples and their standard plate count	
Alkaline phosphatase test to check the efficiency of pasteurization of milk	
Isolation of any foodborne bacteria from food products	
. Isolation of spoilage microorganisms from spoiled vegetables/fruits	
Isolation of spoilage microorganisms from bread	
Preparation of Yogurt/Dahi	

Course	Bachelor of Science (B.Sc.) Semester - 6
Type of Course	Core Courses
Prerequisite	05010504-T - MICROBIAL GENETICS AND MOLECULAR BIOLOGY
Course Objective	 To understand the knowledge of basics genomes To remember the concept of basic structure of bacterial genomics, bacterial genomics , viral genomics To analyze and predict the bacterial diversity of genome structure. To create research work on both the Bacteria and Archaea domains as model systems and understand the physiological processes such as growth and metabolism.

Teaching Scheme (Contact Hours)				Exa	mination Sch	eme		
				Theory	Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	2	5	70	30	50	-	150

Cour	se Content	T - Teaching Hours W -	Weig	shtage
Sr.	Topics		Т	w
1	1 Evolution of Microbial Genomes 2		12	20
		s of sequenced microbial genomes, core genome pool, flexible genome pool and concept of pangeno e transfer(HGT), Evolution of bacterial virulence - Genomic islands, Pathogenicity islands (PAI) and th		
2	Metagenomics		12	20
	Prospecting ge	d development of metagenomics, Understanding bacterial diversity using metagenomics approach, nes of biotechnological importance using Metagenomics Basic knowledge of viral metagenome, met s, metaproteomics and metabolomics.		
3	Molecular Basi	s of Host-Microbe Interaction	12	20
	Type three sec	is and its mechanism in plant pathogens, Hypersensitive response (HR) to plant pathogens and its me retion systems (TTSS) of plant and animal pathogens, Biofilms: types of microorganisms, molecular a e in environment, health care, virulence and antimicrobial resistance.		
4	Systems and Sy	ynthetic Biology	12	20
	-	biological systems, Quorum sensing in bacteria, Coordinated regulation of bacterial virulence factors lio virus in laboratory, Future implications of synthetic biology with respect to bacteria and viruses.	s, Bas	ics of
5	Microbiomes a	nd importance of microbial communities	12	20
	organisms and	nd importance of microbial communities, VBNC (viable but not culturable bacteria). Genetically moc their uses. Modern methods of rapid identification of microbes (PCR, mass spectrometry, fluorescen RISPR-Cas system.		
		Total	60	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy				
Level	Remembrance	Understanding	Create	

Weightage	30	60	10
-----------	----	----	----

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cour	se Outcomes	
At the	e end of this cour	rse, students will be able to:
CO1	Can explain salie	ent characteristics of genomes of representative microorganisms.
CO2	Have understoo	od the concept and importance of metagenomics.
CO3		an initial understanding of recent developments of host-microbe interactions, synthetic biology, viable but forms of microorganism etc.
CO4	Are able to extr the results	ract DNA from bacteria / soil and perform PCR for 16s Ribosomal genes using universal primers and interpret

Refe	erence Books
1.	Advanced Accountancy By S. N. Maheshwari Vikas Publishing House
2.	Advanced accountancy By Gupta R L S Chand, New Delhi 2003
3.	Advanced accountancy Vol II By Maheshwari S N Vikas Publishing House, New Delhi 2004
4.	Textboook of Microbiology By Dubey R.C. Maheshwari D.K. S. Chand, Pub. Year 2018
5.	Advanced cost and management accounting By Saxena V K Sultan Chand & Sons, New Delhi 1996
6.	Advanced economic theory By Ahuja H L S Chand, New Delhi 1970
7.	Advanced engineering mathematics By Mishra V P V P Mishra Publishers, New Delhi 2009
8.	Advanced learner's dictionary of management By A Team of Experts Anmol Publishers, New Delhi 2000
9.	Advanced management accounting By Kaplan Robert S PEarson, New Delhi 1998

1.	Extraction of metagenomics DNA from soil	
2.	nderstand the impediments in extracting metagenomics DNA from soil	
3.	. PCR amplification of metagenomics DNA using universal 16s ribosomal gene primers	
4.	ase study to understand how the polio virus genome was synthesized in the laboratory	
5.	ase study to understand how networking of metabolic pathways in bacteria takes place	

Course	Bachelor of Science (B.Sc.) Semester - 6
Type of Course	Generic Elective Courses
Prerequisite	05010402-T - MICROBIAL GENETICS
Course Objective	 To understand the information about the tools and methods for genetic engineering To illustrate the creative use of modern tools and techniques for the manipulation and analysis of genomic sequences. To expose students to the application of recombinant DNA technology in biotechnological research. To explain the cloning techniques.

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme				
							Theory	/ Marks	Practica	al Marks	Total
Lecture	Tutorial	Lab	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks			
4	-	2	5	70	30	50	-	150			

Course Content T		T - Teaching Hours W -	Weig	ghtage			
Sr.	Topics		Т	w			
1	Introduction to	genetic engineering	12	20			
	Il restriction en	enetic engineering and biotechnology Restriction modification systems: Mode of action, applications zymes in genetic engineering. DNA modifying enzymes and their applications: DNA polymerases. Ter lyltransferase, kinases and phosphatases, and DNA ligases.					
2 Cloning 12							
	Use of linkers and adaptors:Transformation of DNA: Chemical method, Electroporation. Methods of DNA, RNA and Protein analysis: Agarose gel electrophoresis, Southern - and Northern - blotting techniques, dot blot, DNA microarray analysis,SDS-PAGE, and Western blotting.						
3	3 Cloning Vectors 12						
	vectors Cosmid	s: Definition and Properties Plasmid vectors: pBR and pUC series Bacteriophage lambda and M13 bas ls, BACs, YACs Expression vectors: E.colilac and T7 promoter-based vectors, yeast YIp, YEp and YCp ve sed vectors, mammalian SV40-based expression vectors.		5,			
4	DNA Amplifica	tion and DNA sequencing	12	20			
	DNA Amplification and DNA sequencing: PCR: Basics of PCR, RT-PCR, Real-Time PCR Genomic and cDNA libraries: Preparation and uses, Genome sequencing Sanger'smethod of DNA Sequencing: traditional and automated sequencing.						
5	Application of	Genetic Engineering and Biotechnology	12	20			
	Application of Genetic Engineering and Biotechnology: Gene delivery:Microinjection, electroporation, biolistic method (gene gun), liposome and viralmediated delivery, Agrobacterium - mediated delivery. Products of recombinant DNA technology: Products of human therapeutic interest - insulin, hGH, antisense molecules. Bt transgenic - cotton, brinjal, flavosavo tomato, Gene therapy, recombinant vaccine, protein engineering.						
		Total	60	100			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy					
Level	Remembrance	Understanding	Application		

Weightage	30	60	10
-----------	----	----	----

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:						
CO1	Has acquired a fairly good knowledge of the tools and methods for genetic engineering.						
CO2	Has acquired a fairly good understanding of how these tools and methods are employed in the laboratory for the manipulation of DNA so as to make it relevant for biotechnological uses.						
CO3	Having the ability to understand the application of genetic engineering technology						
CO4	D4 Having the ability to gain knowledge of cloning techniques.						

Reference Books

1.	Advanced engineering mathematics By Mishra V P V P Mishra Publishers, New Delhi 2009
2.	Elements of engineering mathematics -I By V P Mishra and Jyoti Mishra S K Kataria and Sons, New Delhi 2011
3.	Elements of engineering mathematics -III By V P Mishra and Jyoti Mishra S K Kataria and Sons, New Delhi 2011
4.	Textbook of engineering thermodynamics By Rajput, R. K. Laxmi Publication, Bangalore 2014
5.	A text book of elements of mechanical engineering By Katariya H G Books India Publications, Ahmedabad 2012
6.	Higher Engineering Mathematics By Dr. B. S. Grewal
7.	Automobile engineering : vol.2Singh By Singh, Kirpal Standard Publishers Distributors, Delhi 2011
8.	Automobile engineering - I By Singh, Kirpal Standard Publishers Dist., Delhi 2013
9.	Mechanical engineering : Convetional and objective By Khurmi R S Sultan Chand, New Delhi 2014
10.	A text book of engineering mechanics By Khurmi R S Sultan Chand, New Delhi 2013
11.	Engineering Mechanics By Rethaliya, R. P. Atul prakashan, Ahmedabad

List of Practical

1.	Isolation of Plasmid DNA from E.coli.		
2.	Digestion of DNA using restriction enzymes and analysis by agarose gel electrophoresis		
3.	Ligation of DNA fragments.		
4.	Interpretation of sequencing gel electropherograms		
5.	Designing of primers for DNA amplification.		
6.	Amplification of	f DNA by PCR	
7.	Demonstration	of Southern blotting	

Course	Bachelor of Science (B.Sc.)	Semester - 6
Type of Course	Skill Enhancement Courses	
Prerequisite	05010403-T - PHARMACEUTICAL MICROBIOLOGY	
Course Objective	 To describe pre-examination procedures applicable to diagnostic microbiology. To explain post-examination procedures applicable to diagnostic microbiology. To perform standard microbiological staining techniques. To discuss the correct culture set up and incubation of microbial specimens. To interpret the results of microbial cultures, stains, or tests. 	

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme		
				Theory Marks		Practical Marks		Total	
Lecture	Tutorial	Lab	Credit	Credit	External Mark (T)	Internal Marks (T)	External Mark (P)	Internal Marks (P)	Marks
4	-	-	4	70	30	-	-	100	

Cour	urse Content T - Teaching Hours W - Weightage					ghtage		
Sr.	Topics						т	w
1	Importance	e of Diagnosis of	Diseases:				12	20
	Importance of Diagnosis of Diseases:Bacterial, Viral, Fungal and Protozoan Diseases of various human body systems, Disease associated clinical samples for diagnosis.				sease			
2	Collection	of Clinical Sample	S				12	20
						vity, throat, skin, Blood, CSF, urine and fae ratory and storage.	es) and	
3	Direct Micr	oscopic Examina	tion and Culture				12	20
	tuberculosi	s, Giemsastained	thin blood film for	r malaria. Prepara	tion a	y staining - Gram stain, Ziehl-Neelson stai ind use of culture media Blood agar, Choc ties of various bacterial pathogens.	-	ar,
4	Serological	and Molecular N	lethods				12	20
	-		-			on, ELISA, immunofluorescence, Nucleic a gens:Typhoid, Dengue andHIV, Swine flu.	id base	d
5	Testing for	Antibiotic Sensit	ivity in Bacteria				12	20
	Testing for Antibiotic Sensitivity in Bacteria: Importance, Determination of resistance/sensitivity of bacteria using disc diffusion method, Determination of minimal inhibitory concentration (MIC) of an antibiotic by serial double dilution method.							
						Тс	tal 60	100
Sugg	ested Distri	bution Of Theory	Marks Using Bloo	m's Taxonomy			i	
Level		Remembrance	Understanding	Application				
Weigł	ntage	20	60	20]			

NOTE : This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cour	Course Outcomes							
At the	At the end of this course, students will be able to:							
CO1	O1 Identify diseases of various human body systems & importance of diagnosis.							
CO2	Understand the concept of collection of clinical samples & methods of transport.							
CO3	3 Apply knowledge by examination of clinical samples through staining and culturing methods							
CO4	Explain the concept of serological and molecular methods and antibiotic sensitivity and resistant							
CO5	5 Describe the concept of antibiotic sensitivity and resistant.							

Reference Books

1.	Catering for health By Rees robert DH, Norwich 2002
2.	The health of the nation- a policy assessed By Swales john The stationary office, London 1998
3.	Public finance By Bhatia H L Vikas Publishing House, New Delhi 2004
4.	Dianetics : the modern science of mental health By Hubbard L Ron Hubbard, Denmark
5.	Microbial ecology : fundamentals and applications By Ronald M Atlas Pearson Education, New Delhi 2009
6.	Industrial Safety By Rao S.S. Khanna Publishers, Delhi: 2019
7.	Anatomy and Physiology in Health and Illness By Kathleen J.W. Wilson Churchill Livingstone, New York
8.	Elements of Human Anatomy & Physiology & Health Education By Goyal.R.K, B.S.Shah Prakashan, Ahmedabad: 2019
9.	Management of public relations and communication By sengupta sailesh Vikas pub House, New delhi 2003

