

06000101 - ENGLISH COMMUNICATION AND LIFE SKILLS-I

Course	Master of Science (M.Sc.) Semester - 1				
Type of Course	Type of Course Ability Enhancement Compulsory Course				
Prerequisite	rerequisite -				
Course Objective	 To provide an overview of Prerequisites to Communication. To put in use the basic mechanics of Grammar. To provide an outline to effective Organizational Communication. To underline the nuances of Business communication. 				

Teaching Scheme (Contact Hours)					Exa	mination Scheme		
				Theory	Marks	Practical Marks	Total	
Lecture	Tutorial	Lab	Credit	SEE	CIA		Total Marks	
3	-	0	3.00	70	30		100	

 $\textbf{\textit{SEE}} - Semester\ End\ Examination,\ \textbf{\textit{CIA}} - Continuous\ Internal\ Assessment\ (It\ consists\ of\ Assignments/Seminars/Presentations/MCQ\ Tests,\ etc.)$

Cou	rse Content	T - Teaching Hours	W - V	Veig	htag
Sr.	Topics			Т	W
1	English gramma	ar		13	25
	 Parts of 	speech			
	 Clauses 				
	 Formati 	on of sentence			
	• Tenses				
2	Business Comm	nunication		15	25
	Concept	of business communication & business correspondences			
	 Classific 	ation of communication – interpersonal, intrapersonal, Oral, written, non-verbal, etc.			
		es of effective writing			
	• Introdu	ction to business letters			
3	Introduction To	Soft Skills		8	25
	Meanin	g, introduction to soft skills & hard skills			
	• Interde	pendence and differences between soft skills & hard skills			
		f possessing soft skills			
	Signification	nt Soft skills and ways to develop Soft skills such as Time Management & Stress Management			
4	Presentation SI	cill .		9	25
	 Present 	ation styles			
	Structur	e and guideline for making a presentation			
		n flaws and overcoming them			
		nguage and tips for giving a presentation & Presentation tips			
		lity development			
	• Intervie	w Skills: Gestures, Body Languages, Pre-interview preparation, Do & Don't at Interview			
			Total	30	10

Suggested Distri				
Level Remembrance Understanding Analyze Creat				
Weightage	20	40	20	20

 $NOTE: This \ specification \ table \ shall \ be \ treated \ as \ a \ general \ guideline \ for \ the \ students \ and \ the \ teachers. \ The \ actual \ distribution \ of \ marks \ in \ the \ question \ paper \ may$ vary slightly from above table.

Course	Outcomes

At the	At the end of this course, students will be able to:					
CO1	CO1 Apply Verbal and Non-Verbal Communication Techniques in the Professional Environment					
CO2	write correctly and properly with special reference to Letter writing					
CO3	Prepare and present effective presentations aided by ICT tools					
CO4	Contribute positively to the overall growth of the organization					

Refe	erence Books			
1.	High School En Wren & Martin	glish Grammar & Composition (TextBook) (TextBook) ; Blackie		
2.	2. High School English Grammar & Composition (TextBook) (TextBook) Wren Martin; Tata McGraw Hill			
3.	_	rocabulary at a Glance (TextBook) (TextBook) radwaj; Evincepub Publishing		
4.	High School En Wren & Martin	glish Grammar & Composition (TextBook) (TextBook) ; Blackie		

06100101 - ORGANIC CHEMISTRY-I

Course	Master of Science (M.Sc.) Semester - 1					
Type of Course	Core Course					
Prerequisite	-					
Course Objective	 To provide the basic and advanced knowledge of very useful concepts of organic chemist To provide the basic knowledge of stability of reactive intermediate. To understand the mechanisms involved in aliphatic Nucleophilic substitution reactions. To understand the basic name reaction. 	ry				

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
					SEE	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA	50	Marks
3	-	2	3.00	70	30		150

 $\textbf{\textit{SEE}} - Semester\ End\ Examination,\ \textbf{\textit{CIA}} - Continuous\ Internal\ Assessment\ (It\ consists\ of\ Assignments/Seminars/Presentations/MCQ\ Tests,\ etc.)$

Cou	rse Content	T - Teaching Hours W -	Weig	htage
Sr.	Topics		Т	W
1	Reactive intern	nediate	12	30
	and fate. Carbe	classical and non-classical): stability, structure, generation and fate. Carbanions: stability, structure, gones: stability and structure, the generation and fate. Free radicals: stability, structure, generation a cy, structure, generations.		
2	Aromticity		9	15
		nd concept of aromaticity. Aromaticity and aromatic character, Frost circle diagram for cyclo-butadie ther examples Stabilization energy and delocalization energy examples.	ne,	
3	Molecular rear	rangements	12	25
	Pinacolone rea	nistic considerations, nature of migration of following Carbon to Carbon migration of R, H and Ar: Pir rrangement, Favorskii rearrangement Carbon to Nitrogen migrations: Curtius rearrangement ,Schmid Carbon to oxygen migration of Ar :Baeyer- villager rearrangement		-
4	Organic Named	Reactions	12	30
		lations' reaction, Stork- Enamine reaction ,Gilman reaction, Diels-Alder reaction, Wittig reaction, End n,Organolithiation reaction, Wilkinson catalyst.	reac	tion,
		Total	45	100

Suggested Distr	ibution Of Theory					
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	15	15	20	20	20	10

Cour	Course Outcomes						
At the	At the end of this course, students will be able to:						
CO1	Able to recogni	ze either molecule is aromatic, non-aromatic or antiaromatic					
CO2	To know the impact of organic chemistry on the fields of medicine, pharmacy and its impact on the global economy.						
CO3		o do organic nomenclature and its symbolism and can learn also the fundamental principles offunctional group organic synthesis					
CO4	Able to describe	e mechanism of different aliphatic Nucleophilic substitution reactions					

1.	Advanced Organic Chemistry Part –B F.A.Careyand R.J.Sundberg; Plenum Press
2.	Advanced Organic Chemistry March Jerry; Wiley Eastern Ltd. New Delhi (1985).; 4
3.	Organic Chemistry Morrison and Boyd; Pearson Publication

List of Practical

LISCO	· · · · · · · · · · · · · · · · · · ·	
1.	Organic Prepar	ation
	Synthesis of Ac	etanilide from aniline.
2.	Aspirin from sa	licylic acid
3.	1-azo-phenyl,	2-napthol from β-napthol.
4.	7-hydroxy-4me	ethyl coumarin from resorcinol
5.	Methyl Salicyla	te from salicylic acid
6.	lodoform from	acetone
7.	Dibenzalacetor	ne from Benzaldehyde

List of Tutorial

1.	Assignment-1	
2.	Assignment-2	

06100111 - ANALYTICAL CHEMISTRY-I

Course	Master of Science (M.Sc.)	Semester – 1
Type of Course	Core Course	
Prerequisite	-	
Course Objective	 To understand the concept of the analytical chemistry(Sampling, Volumetric Method of Analysis, Gravimetric Analysis) To provide the basic knowledge of Instruments. To learn method of calibration and detection limits of instruments. To learn the types of electrodes and their uses. 	

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
		Theory Marks		Marks	Practical Marks	Total	
Lecture	Tutorial	Lab	Credit	SEE	CIA		Marks
3	-	2	4.00	70	30	50	150

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W –	Weig	ghtag
Sr.	Topics		Т	W
1	Concept involv	ed in Analysis and Statistics	15	35
	classical and in causes and way median, labora of glassware, sa	tical chemistry(dyes, drugs, forensic, agriculture, food and nutrition), classification of analytical method strumental, types of instrumental analysis, selecting analysis method, Accuracy, Precision, errors any for minimization, absolute error, relative error, Standard deviation, relative standard deviation, metory operations and practices, good laboratory practices (GLP), Volumetric glassware-cleaning and cample preparation—dissolution, selecting and handling reagents, laboratory notebooks, safety in the bration and detection limits.	d its ean calibr	atior
2	-	Calibration Methods	9	20
		ample preparation, general steps in chemical analysis, calibration of glasswares. Finding the best stragression, correlation coefficient; Calibration curves, standard addition technique and internal standa	_	line-
3	Volumetric Me	thod of Analysis	12	25
	Complex metri	condary standards, Principles of volumetric analysis, Acid–base titration. Titration in non-aqueous so c titrations, Precipitation titrations (Mohr's titration, Volhard's titration, adsorption indicators, Fajar ox titrations, Theoretical aspects of titration curves and end point evaluation, Choice and suitability o och case.	ı's	ts,
	Instrumental a		9	20
4		nalysis		
4	pH metry (Princ	nalysis ciple of instrumentation and mechanism of pH by glass electrode), Potentiometry, Conductometry ar nd explanation of the nature of titration curves	nd ty	oes

Suggested Distr	ibution Of Theory	Marks Using Bloo	m's Taxonomy			
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	15	15	25	25	10	10

Cour	se Outcomes			
At the	At the end of this course, students will be able to:			
CO1	Students can learn the basic analytical and technical skills to work effectively in the various fields of chemistry			
CO2	To know and ur	nderstand the issues of safety regulations in the use of chemicals in their laboratory work		
CO3	Student can un	derstand the concept of sampling, calibration and cleaning of glassware's.		
CO4	Able to find the	dissociation constant and solubility product		

1.	Quantitative Chemical Analysis Daniel C. Harris W.H. Freeman and Company Daniel C. Harris
2.	Instrumental Methods of Chemical Analysis Galen W. Ewing International Student Edition Galen W. Ewing
3.	Analytical Chemistry Gary D. Christian John Wiley and Sons Inc. Gary D. Christian

List of Practical

LISCO	i i i accicai		
1.	Determine Chlo	Determine Chloride by Mohr method.	
2.	To determine total dissolve solid in water sample		
3.	To determine h	nardness of water	
4.	Estimation of b	oinary mixture by EDTA. (Zn+2 & Mg+2)	
5.	Estimation of b	inary mixture by EDTA. (Ca+2 & Mg+2)	
6.	Determine Rf v	alue by Thin layer chromatography(TLC)	

List of Tutorial

1.	Assignment-1
2.	Assignment-2

06100131 - INORGANIC CHEMISTRY-I

Course	Master of Science (M.Sc.)	Semester – 1
Type of Course	Core Course	
Prerequisite	-	
Course Objective	 To provide the basic knowledge of Organo metallic compounds. To understand the concept of Co-ordination compounds. To understand how metal ions interact with biological environments. To explain the concept of transition metal complex 	

Teaching Scheme (Contact Hours)					Exa	mination Scheme		
				Theory	Marks	Practical Marks	Total	
Lecture	Tutorial	Lab	Credit	SEE	CIA		Total Marks	
3	-	2	4.00	70	30	50	150	

 $\textbf{\textit{SEE}} - Semester\ End\ Examination,\ \textbf{\textit{CIA}} - Continuous\ Internal\ Assessment\ (It\ consists\ of\ Assignments/Seminars/Presentations/MCQ\ Tests,\ etc.)$

Cou	rse Content	T - Teaching Hours W –	Weig	htag
Sr.	Topics		Т	W
1	Organometalli	c Compounds	15	25
	rule, Formal ch	f OMC, Classification of OMC, Hepticity of OMC, Denticity of OMC,Application of OMC, Fluxonial lig narge on Ligand ,electron contribution of organo metallic compounds, Clusters, Types of clusters, ca N-M bonds in clusters		
2	Co-ordination	Compounds	9	25
		f Co-ordination compounds, Werner's co-ordination theory and its experimental verification or evide ic number concept, chelates, types of chelates, nomenclature of co-ordination compounds	nces	,
3	Bio-Inorganic o	chemistry	12	25
		race elements in Biological processes, metal Porphyrins with special references to hemoglobin and m of alkali and alkaline earth metal ones with special reference to Ca+2. Nitrogen fixation	yoglo	bin.
4	Electronic Spe	ctra of metal complexes	9	25
	Electronic spec	tra of transition metal complex, laporte orbital and spin selection rules. Original energy level diagran	of d	5
	and combined			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level	Understanding	Analyze	Evaluate				
Weightage	40	40	20				

Cour	se Outcomes					
At the	At the end of this course, students will be able to:					
CO1	Predict geome	try and structure of different molecules				
CO2	Differentiate bonding nature of different compounds.					
CO3	Justify definitions of the terms inert and labile and state which d-electron configurations are associated with inertness.					
CO4	To understand	the current problem in bio-inorganic chemistry				
CO5	Examine electro	onic spectra of various metal complexes				

1.	Introduction to quantam chemistry (TextBook)A. K. Chandra Tata McGraw-Hill			
2.	Molecular Quantum Mechanics (TextBook) P. W. Atkins and R. S. Friedman Oxford University Pres			
3.	Qualitative Inorganic Analysis (TextBook) (A.I VOGEL) Svehla / Sivasankar Pearson Education India			

List of	f Practical	
1.	Introduction of	instruments and safety rules.
2.		nalysis find out positive and negative radicals present in your given inorganic compound- pb^(+2),Al^2,Cl^-,N\\DO_3\\DO_3\\DO,S\\DO_4-2)\\DO_4
3.		nalysis find out positive and negative radicals present in your given inorganic compound- CO^(+2),K^+,Ni^_4,Br^-,NuO_3u^-
4.		nnalysis find out positive and negative radicals present in your given inorganic compound - Fe^(+3),Ca^Cr_O_4_^-,C_O^(-2)3
5.		nalysis find out positive and negative radicals present in your given inorganic compound- CO^(+2),Ca^Cl^-,NuO_3u^-
6.	By qualitative a (+2),CI^-,Br^-,S	nalysis find out positive and negative radicals present in your given inorganic compound- K^+, Al^(+2),Zn^□O^(-2)□_4
7.	By qualitative a (+2),Br^-,Cl^-,S	nalysis find out positive and negative radicals present in your given inorganic compound- Na^+,Cu^(+2),Ni^□O^(-2)□_4
8.	Gravimetric an	alysis of Nickel
9.	Gravimetric an	laysis of copper
10.	Gravimetric an	alysis of aluminium

45

Total

100

06100141 - PHYSICAL CHEMISTRY-I

Course	Master of Science (M.Sc.)	Semester – 1
Type of Course	Core Course	
Prerequisite	-	
Course Objective	To provide the basic knowledge of very important concepts of the physical chemistry i.e (chemodynamics, surface chemistry) To learn about the concept of phase and derivation of phase rule. To evaluate most probable distribution state for all type of statics i.e. for Maxwell-Boltzma To understand the concept of distribution and thermodynamic probability.	

Teaching Scheme (Contact Hours)					Exa	mination Scheme		
				Theory	Marks	Practical Marks	Total	
Lecture	Tutorial	Lab	Credit	SEE	CIA		Total Marks	
3	-	2	4.00	70	30	50	150	

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Weig	htage
Sr.	Topics		Т	W
1	Chemical Ther	modynamics	13	30
	absolute entro Gibbs Duhem-l	eorem and its applications to gaseous system, Third law of thermodynamics and its application to expies of solids, liquids, and gases; Partial molar quantities and their determination, Gibbs-Duhem eq Margules equation and its application, Chemical potential and its applications, Activity and activity ethods of determination of activity and activity coefficients, Concept of Fugacity and its determinationly	uatior	_
2	Chemical Dyna	mics	10	25
	and bromine,	reaction (Lindeman's Theory),Chain reactions and branched chain reactions, Chain reaction betweer Transition State Theory, Reaction Kinetics of Thermal and Photochemical Hydrogen-Bromine Reaction	•	_
	of Fast Method Equation)	d reaction(Flow &Flash photolysis), Enzyme catalyzed reactions, mechanism kinetics, Examples. (Arrh		
3				
3	Equation) Surface Chemi Physical and C		enius 12	
3	Equation) Surface Chemi Physical and C	stry hemical adsorption, Adsorption isotherms, Multi molecular Theory O R B.E.T. Adsorption Isotherm, Gation, Surface active agent OR Surfactants, Micellisation, Critical Micellar Concentration(CMC)	enius 12	

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level	Understanding	Analyze	Evaluate				
Weightage	50	25	25				

vary slightly from above table.

Cour	se Outcomes					
At the	At the end of this course, students will be able to:					
CO1	To calculate cha	anges in kinetic, potential, enthalpy and internal energy.				
CO2	To understand the concept of distribution and thermodynamic probabiillty					
CO3	CO3 To iunderstand the suspensions and isolations from solutions					
CO4	To identify the reaction	anode, cathode, direction of flow, sign of electrodes, and direction of ion flow in salt bridge , from a redox				

1.	The Elements of Physical Chemistry P. Atkins
2.	An Introduction to Chemical Thermodynamics R. P. Rastogi and P. R. Misra
3.	Instrumental analysis Skoog,holler and crouch

List of Practical

1.	Introduction of instruments and safety rules				
2.	To find the partition co-efficient of between Water and Chloroform				
3.	To study the kinetics of the reaction between and				
4.	To determine dissociation constant of weak acid by titration method using meter				
5.	To determine dissociation constant of strong acid by titration method using meter				
6.	To determine dissociation constant of strong base by titration method using meter				
7.	To determine solubility and solubility product of separating solution salts by Conductometry				
8.	To determine the concentration of and in the given mixture using 0.1 N HCl conductometrically				
9.	To determine the concentration of Fe in solution by colorimetry				
10.	To determine the concentration of Fe in solution by colorimetry				

06000201 - ENGLISH COMMUNICATION AND LIFE SKILLS - II

Course	Master of Science (M.Sc.)	Semester – 2
Type of Course	Ability Enhancement Compulsory Course	
Prerequisite	06000101-English Communication and Life Skills-I	
Course Objective	 To develop and integrate the use of the four language skills, i.e. reading, listening, speaking to understand the uses and the basic Business vocabulary. To understand the utilizations of several preparation for interviews. To provide the knowledge of Critical Thinking and Decision-Making techniques for further 	

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA	_	Total Marks
3	-	-	3.00	70	30		100

 $\textbf{\textit{SEE}} - Semester\ End\ Examination,\ \textbf{\textit{CIA}} - Continuous\ Internal\ Assessment\ (It\ consists\ of\ Assignments/Seminars/Presentations/MCQ\ Tests,\ etc.)$

Cou	rse Content	T - Teaching Hours V	V – Wei	ghtage
Sr.	Topics		Т	w
1	Written comm	unication	13	25
	Terms r	f written communication elated to Formal communication Il communication		
2	Vocabulary		10	25
	UnderstIdioms	canding terms		
3	Interview		10	25
	 Prepara 	f Interview Ition before the interview d Don'ts of interview		
4	Critical Thinkin	g and Decision Making	12	25
	How to	reristics of critical thinker make decisions n making techniques		
		То	tal 45	100

Suggested Distr						
Level	Level Remembrance Understanding Application					
Weightage	30	30	20	20		

Cour	se Outcomes						
At the	At the end of this course, students will be able to:						
CO1	Use English effe	ectively for study purpose across the curriculum.					
CO2	Communicate 6	effectively and appropriately in real-life situation.					
CO3	Demonstrate k	nowledge of personal beliefs and values and a commitment to continuing personal reflection.					
CO4	Students will ar	nalyze and develop accurate sense of self Management					
CO5	Students can m	nake proper decision line according to the requirements and resources by their actualization.					

Reference Books

1.	Learn English vocabulary at a Glance (TextBook) Dr. RakeshBharadwaj; Evincepub Publishing
2.	High School English Grammar & Composition (TextBook) Wren & Martin; Blackie
3.	High School English Grammar & Composition (TextBook) Wren & Martin; Blackie
4.	Learn English vocabulary at a Glance (TextBook) Dr. Rakesh Bharadwai: Dr. Rakesh Bharadwai

100

Total

06100201- ORGANIC CHEMISTRY-II

Course	Master of Science (M.Sc.)	Semester - 2
Type of Course	Core Course	
Prerequisite	06100101 - Organic Chemistry-I	
Course Objective	To use the skills for correct stereochemical assignment and interpretation in rather simple organic molecules To formulate mechanistic study of organic reactions and synthesis To define the basic concepts, classification and biological significance of vitamins and amin To classify the reaction in organic chemistry	no acids

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	Marks	Practical Marks	Total
Lecture	e Tutorial	Lab	Credit	SEE	CIA		Marks
3	-	2	4.00	70	30	50	150

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Weig	htage
Sr.	Topics		Т	w
1	Retro Synthesi	s	12	25
	importance of	n to synthons and synthetic equivalents. Disconnection approach, functional group inter-conversions the order of events in organic synthesis, one group C-X and two group C-X disconnections, chemo selerity, cyclisation reaction, amine synthesis. Principle of protection of alcohol, amine, carbonyl and ca	ectiv	ity,
2	Photochemistr	ry & Basic of Photochemistry	9	25
	· · · · · · · · · · · · · · · · · · ·	citation, photochemical laws, quantum yield, electronically excited states- life times-measurements ondon principle and photochemical stages-primary and secondary processes. Interaction of electrom matter.		
3	Green chemist	ry	12	25
	photo catalyst,	ion, principles, green catalysts-acid catalyst, basic catalyst, oxidation catalysts, polymer supported cagereen synthesis-phase transfer catalyst, green synthesis of polycarbonates, paracetamol, ibuprofen, ic acid and styrene.	-	
l		,		

Classification of heterocyclic compounds, Principles of heterocyclic synthesis involving cyclization reactions and reactivity

Suggested Distr	ibution Of Theory	Marks Using Bloo				
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	25	25	10	15	15	10

and tautomerism of aromatic, heterocyclic compounds and their mechanism containing two heteroatoms.

Cour	Course Outcomes					
At the	At the end of this course, students will be able to:					
CO1	Attain the skills for correct stereochemical assignment and interpretation in rather simple organic molecules.					
CO2	Formulate mechanistic study of organic reactions and synthesis					
CO3	Understand the basic concepts, classification and biological significance of vitamins and amino acids					
CO4	Rearrangement reaction in organic chemistry.					

1.	Designing Organic Synthesis S. Warren. Wiley
2.	Advanced Organic Chemistry: Reactions, Mechanisms and Structure J. March. Wiley
3.	Fundamentals of photo chemistry K.K. Rothagi-Mukheriji, Wiley-Eastern.

List of Practical

LIST O	f Practical
1.	Sepration and Qualitative analysis of the organic mixure (trinary mixure) Benzoic acid , 2-Nephthol and Acetanilide.
2.	Separation and Qualitative analysis of the organic mixture (trinary mixture) Napthalene, p-Nitro Aniline, Oxalic acid
3.	Separation and Qualitative analysis of the organic mixture (trinary mixture) 4-Nitro Benzoic Acid, 2-Nephthol, 4-chloroaniline
4.	Separation and Qualitative analysis of the organic mixture (trinary mixture) Cinnamic acid, 4-Chloroaniline and 4-Nitro Phenol
5.	Separation and Qualitative analysis of the organic mixture (trinary mixture) Thiourea, Phthelic acid and 2-Nitro Phenol
6.	Separation and Qualitative analysis of the organic mixture (trinary mixture) Methanol, Chlorobenzene and Aniline

06100231- PHYSICAL CHEMISTRY-II

Course	Master of Science (M.Sc.) Semester - 2			
Type of Course	Type of Course Course			
Prerequisite 06100141 - Physical Chemistry-I				
Course Objective	 To provide the concept of Compare the penetrating power of alpha, beta, neutron, and radiation. To give the knowledge of the four major classes of macromolecules. To acquire working knowledge of the zero and first law of thermodynamics. To provide chemical and physical bonds, influence of the bonds on properties. 	gamma		

Teaching Scheme (Contact Hours)				Exa	mination Scheme		
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA		Marks
3	-	2	4.00	70	30	50	150

 $\textbf{\textit{SEE}} - Semester \ End \ Examination, \ \textbf{\textit{CIA}} - Continuous \ Internal \ Assessment \ (It \ consists \ of \ Assignments/Seminars/Presentations/MCQ \ Tests, \ etc.)$

Cou	rse Content	T - Teaching Hours W -	Weig	ghtag
Sr.	Topics		Т	W
1	Nuclear Chemi	stry	12	25
	model, Fermi g	rties-nuclear radius, liquid drop model, magnetic moment, nuclear binding energy, nuclear models-s as model, collective model, radioactive decay, nuclear reactions, evaporation, fragmentation, fission as, accelarators, reaction cross section, use of radioisotopes as tracers.		
2	Macromolecul	es	9	20
		echanism of Polymerisation, Molecular weight of Macromolecules (Number average and weight aver ght), Methods of determining molecular weight of polymers, Properties of polymers and applications	_	
3	Statistical The	modynamics	12	25
	probable distri	stribution of molecules, thermodynamic probability, permutations and combinations, Boltzmann's m bution, partition function- translational, vibrational, rotational, electronic nuclear partition functions hermodynamics, properties in terms of partition function, Internal energy, Examples		
4	Solid State Che	emistry	9	30
	calculation of s	ds and electronic structure in solids, bond theory of metals semiconductors and insulators, defects in schotky and Frenkel defects using statistical method, non-stoichiometry, solid electrolytes, diffusion uctivity in solids, super conductivity.	-	
		Total	42	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy						
Level	Understanding	Jnderstanding Analyze				
Weightage	30	30	20			

Cour	Course Outcomes						
At the	At the end of this course, students will be able to:						
CO1	Use proper isotopic notation to write down and balance a nuclear reaction.						
CO2	Experiment the basis of biological macromolecules' constitution and traits						
соз	Analyse the physical interpretation of distribution functions and discuss and show how these can be used in calculations opasic thermodynamic properties.	of					
CO4	Provide the basic methods for characterization of solid matter						

1.	Essentials of Physical chemistry Bahl Arun and Tuli S Chand, 2012 (TextBook) Bahl Arun and Tuli S Chand
2.	Essentials of Physical chemistry Bahl Arun and Tuli S Chand, 2012 (TextBook) Bahl Arun and Tuli S Chand
3.	The Elements of Physical Chemistry (TextBook) P. Atkins

List of Practical

LIST O	ractical
1.	To determine the strength of strong acid & weak acid in a given mixture using pH-meter.
2.	To determine the vinyl alcohol by viscosity measurement.
3.	Determine the distribution co-efficient of organic liquid such as ccl_4 & water etc.
4.	Rate constant of hydrolysis of ester (methyl acet.) energy activation reaction.
5.	Kinetics of Saponification ethyl ester by NaOH.
6.	To determine the strength of S.A & W.A using Potentiometry.
7.	To determine the strength of S.A & W.A by Conductometry.
8.	To determine conc. Of nitrite in given solution to use of colourimeter.
9.	To determine the Conc. Of KCI & the solubility product of AgCl (Potentiometry).

06100241- INORGANIC CHEMISTRY-II

Course	Master of Science (M.Sc.) Semester -		
Type of Course	Core Course		
Prerequisite 06100131 - Inorganic Chemistry-I			
Course Objective	 To study about the different types of substitution reactions & also about the mechanism Transition metal complexes To understand about the different theories of bonding in metal complexes and application. To Characterization techniques are central to synthesis of inorganic molecules To understand the concept of d-configuration. 		

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA		Marks
3	-	2	4.00	70	30	50	150

 $\textbf{\textit{SEE}} - Semester \ End \ Examination, \textbf{\textit{CIA}} - Continuous \ Internal \ Assessment \ (It \ consists \ of \ Assignments/Seminars/Presentations/MCQ \ Tests, \ etc.)$

Cou	rse Content	T - Teaching Hours W -	- Wei	ghtag
Sr.	Topics		Т	w
1	Mossbauer Sp	ectroscopy	9	25
		ons of Mossbauer spectroscopy, hyperfine structure, quadruple splitting, instrumentation and applicectroscopy, problems related to Mossbauer spectra.	ation	s of
2	Organometalli	c compounds-II	25	30
	Synthetic & Ca In Medicines -0	cts, Biological Applications and Environmental Aspects of Oregano metallic Compounds -Introductio talytic Aspects of OMC ,Synthetic Applications of Main Groups of Organ metallic Compounds -Orgar Organ metallic compounds In Agriculture and Horticulture -Organ metallic In Industry -Environmenta allic Compounds	n met	
3	d1-d9 spectra		9	25
		for transition, factor affecting an electronic spectrum, or gel diagram with example d1-d9, d2-d8, d3- on diagram (d2), whole formalism	-d7, d	4-d6,
_	Reaction mech			25
4	Reaction meet	anism of transition metal complexes	12	25
4	Reactivity of maffecting acid h	nanism of transition metal complexes netal complexes, Kinetic application of VBT and CFT, Kinetics of octahedral substitution, acid hydroly nydrolysis, base hydrolysis, conjugate base mechanism, Substitution reaction in square planar comp action, Cross reactions and Marcus-hush theory, Inner sphere type reactions.	sis, fa	ctors

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy					
Level	Understanding	Application	Analyze	Evaluate	Create
Weightage	30	20	30	5	5

Cour	Course Outcomes					
At the	At the end of this course, students will be able to:					
CO1	Analyze data obtained from sophisticated equipments (MS) for structure elucidation and chemical analysis					
CO2	Use the basic principles of descriptive chemistry and molecular orbital theory to describe chemical bonding and structure of organometallic compounds					
CO3	Predict the chemical behavior and reactivity of organometallic compounds					
CO4	Study the electronic spectrum and gel diagrams.					
CO5	Acquire knowledge about the formation of complexes in solutions and their stability factors effecting the stability and HSAB principle					

1.	Qualitative Inorganic Analysis(A.I VOGEL) Svehla / Sivasankar Pearson Education India (TextBook) (A.I VOGEL) Svehla / Sivasankar Pearson Education India
2.	Inorganic Pharmaceutical Chemistry (TextBook) Anand & Chatwal; Himalaya Pub. House
3.	Industrial Inorganic Chemicals: Production and Uses Edited by R. Thompson (TextBook)

List o	f Practical Practical	
1.	Preparation of tetra-amine cupric sulphate Cu(II) from copper sulphate.	
2.	Preparation of Tris(thiourea)Cu[3(CS(NH_2)_2]_2 SO_4.2H_2 O	
3.	Preparation of Cis potassium oli oxalate diaques Cromate(III).	
4.	Preparation of Hexamine nickel(II) chloride.	
5.	Preparation Trans K[Cr(C_2 O_4).(H_2 O)_2].2H_2 O.	
6.	To preparation of tris(acetylactonato)mangenes(III) Complex .	

06050211- ANALYTICAL CHEMISTRY-II

Course	Master of Science (M.Sc.)	Semester - 2	
Type of Course	pe of Course Course		
Prerequisite	06100111 - Analytical Chemistry-I		
Course Objective	 To understand structure of different compounds. To give participants a deep knowledge of how particularly high resolution in IR used in Chemistry To give a practical knowledge to infrared (IR), ultraviolet (UV) spectroscopy, MS and NN spectroscopy. To understand the separation method. 		

Т	Contact Hours)			Exa	mination Scheme		
			Theory Marks		Practical Marks	Total	
Lecture	Tutorial	Lab	Credit	SEE	CIA		Marks
3	-	2	4.00	70	30	50	150

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Weig	ghtag
Sr.	Topics		Т	w
1	Fundamentals	of Spectrophotometer and UV-Visible Spectroscopy	15	25
	spectroscopy,	ght, absorption of light, interaction of light with matter and origin of spectra. Instrumentation of UV Double beam and single beam instrumentation, The spectrophotometer-calibration, sources of light $d = detectors$. Beer's law in chemical analysis.		
2	Fundamentals	of NMR Spectroscopy	9	25
	• •	of NMR (Peak hight, Peak signal, Chemical shift) instrumentation and applications of NMR, Criteria for NMR active. Shielding-deshilding, splitting, TMS. Resolution and multiplicity	or a	
3	Fundamental o	of IR Spectroscopy	12	20
	Introduction, F	Principle, Types of vibrations: stretching and bending, Instrumentation, Adsorption of common functions.	onal	
4	Fundamentals	of Chromatography	9	30
		f chromatography, Types of chromatography, Principle of separation: Adsorption, Size exclusion, Ion ity, mode of chromatography	exch	ange
		Total	45	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy					
Level	Understanding	Application	Analyze	Evaluate	
Weightage	30	20	30	30	

Cour	Course Outcomes					
At the	At the end of this course, students will be able to:					
CO1	Students should and anisotropy	have the ability to explain common terms in NMR spectroscopy such as chemical shift, coupling constant and describe how they are affected by molecular structure				
CO2	Students are skilled to perform the most commonly used NMR experiments and to interpret and document their results.					
CO3	Students are ski	lled to perform the most commonly used UV-VIS experiments and to interpret and document their results				
CO4	CO4 have acquired some technical knowledge of, and some practical experience with, analyses in gas and liquid chromatography					

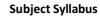
1.	Analytical chemistry principles (TextBook) John H. Kennedy; Saunders College Pub.,
2.	Analytical chemistry principles (TextBook) John H. Kennedy; Saunders College Pub.,
3.	Analytical Chemistry Gary D. Christian John Wiley and Sons Inc. (TextBook) Gary D. Christian

List o	f Practical Practical	
1.	Dissolve oxygen (winkler's) Iodometric method.	
2.	Binary mixture Ca^(+2)& Mg^(+2).	
3.	Estimation of Zn^(+2)&Mg^(+2).	
4.	Find out the Saponification value of oil sample.	
5.	Find out acid value of given oil sample.	
6.	Find out ester value.	
7.	Estimation of paracetamol by using colorimetry instrument.	
8.	Numerical related to (IR, NMR, Mass, CMR)	

06100301- ORGANIC CHEMISTRY-III

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	Discipline Specific Elective Course	
Prerequisite	06100101- Organic Chemistry-I	
Course Objective	1 To extend student's knowledge of synthetic organic chemistry 2 Conservation of orbital symmetry and what conrotatory and disrotatory mean 3 Distinguish net reactions from elementary reactions (steps) 4 To understand the concept of rearrangement reaction	

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA	_	Marks
4	-	-	4.00	70	30	_	100


SEE - Semester End Examination, **CIA** - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Weig	ghtag
Sr.	Topics		Т	w
1	One Group C-C	Disconnections	12	25
	Alcohols and ca	rbonyl compounds, regioselectivity, alkene synthesis, use of acetylenes and aliphatic Nitro compounts	nds in	1
2	Two Group C-C	Disconnections	9	25
		ction, 1,3-difunctionalised compounds, α,β-unsaturated carbonyl compounds, control ir 1,5-difunctionalised compounds. Micheal addition and Robinson annulation	carb	onyl
3	Pericyclic React	tions	12	25
		ions, stereochemistry of pericyclic reaction, conservation of molecular orbital symmetry, electrocyc addition, sigmatropic rearrangements, Mobius–Huckel analysis (PMO approach), correlation diagra		thod
4	Reaction, mech	nanism and applications of Following Rearrangements	9	25
		rrangement, Benzilic Acid Rearrangement, Claisen Rearrangement, Fries Rearrangement, Dienone-p t, Wagner Meerwin Rearrangement	heno	I
	1	Total	42	100

Course Outcomes

At the	At the end of this course, students will be able to:				
CO1	Ability to apply such knowledge and understanding to the solution of problems related to the synthesis of organic target molecules				
CO2	Ability to demonstrate knowledge and understanding of essential facts, concepts, principles and theories relating to retrosynthetic analysis				
CO3	Derive mechanism of a reaction				
CO4	Analyze target compounds by retrosynthetic strategy to devise suitable anionic, cationic and radical synthons				
CO5	Explain Rearrangement reaction				

RU - RSS - M.Sc. | RU - M.Sc. - Organic Chemistry - (2023-24)

Semester: 3

Refe	erence Books					
1.	Designing Organic Synthesis S. Warren. Wiley					
2.	2. Advanced Organic Chemistry: Reactions, Mechanisms and Structure J. March. Wiley					
3.		Methods of Organic Synthesis. Cambridge Univ.				

06100302- ORGANIC CHEMISTRY-IV

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	Discipline Specific Elective Course	
Prerequisite	06100241- Inorganic Chemistry-II	
Course Objective	1 To provide the basic and advanced knowledge of very useful concepts of Advanced Medic Chemistry 2 To understand the process of drug discovery and development 3 To provide the knowledge of computational methods used in drug discovery 4 To understand the current antibiotic discovery.	cinal

Teaching Scheme (Contact Hours)					Exa	mination Scheme			
				Theory	Marks	Practical Marks	Total		
Lecture	Tutorial Lab	Tutorial Lab Cr	ture Tutorial Lab Credit _{SE}	Credit	Credit	SEE	CIA		Marks
4	-	-	4.00	70	30		100		

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Weig	htag
Sr.	Topics		Т	W
1	Introduction to	Medicinal Chemistry	15	30
	pharmacy, pha bacteria, virus,	icinal Chemistry, Important Terminology used in Medicinal Chemistry (Drug, Pharmaceutical chemis rmacognocy, pharmacology, pharmacokinetics, pharmacodynamics, Toxicity, pharmacopeia, antime fungi, vaccine, therapeutic index), Classification of Drugs(on the basis of Structure & Pharmacological Orug Administration, Concept of Pro Drug, Soft Drug and Hard Drug	etabo	
2	Drug Design &	Development	9	20
	-	and lead Modification, QSAR, Physiochemical parameters[Lipophilicity (Hansch equation), Electronic e Hammett equation), Steric parameters(Taft equation)], Bio-isosterism	С	
3	Pharmacokinet	ics	9	25
		n, Drug distribution, drug metabolism, Drug elimination, Important pharmacokinetic parameters in on, Usages of pharmacokinetics in drug development process.	defini	ng
4	Antibiotics		12	25
	adverse effects	ntion of Antibiotics, β-lactam antibiotics : penicillin, Classification (early, resistant, broad spector of penicillins. SAR of penicillin, Synthesis: ampicillin, pivampicillins, cephalosporins : Classification and nalexin, 7- amino cephalosporonic acid	-	R
		Total	45	

Suggested Disti	ribution Of Theory	Marks Using Bloo				
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	25	25	15	15	10	10

CO5 Distinguish Knowledge of Anti-biotics

Cour	se Outcomes						
At the	At the end of this course, students will be able to:						
CO1	Students can understand the historical and advance concept of medicinal chemistry and it's advantages						
CO2	Describe the process of drug discovery and development						
CO3	Gain a basic knowledge of computational methods used in drug discovery						
CO4	Demonstrate th	neir ability to work in teams and communicate scientific information effectively					

Refe	erence Books
1.	Designing Organic Synthesis S. Warren. Wiley
2.	Advanced Organic Chemistry March Jerry; Wiley Eastern Ltd. New Delhi (1985).; 4
3.	Fundamentals of photo chemistry K.K. Rothagi-Mukheriji, Wiley-Eastern.

06100303- ORGANIC CHEMISTRY-V

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	Core Course	
Prerequisite	-	
Course Objective	Introduction of major problems in indoor air pollution and control, regulations Outcomes Give recent statistics of indoor Water Pollutants To understand both soil and agriculture which are two facets of valuable resource necessar sustenance To facilitate the integration of courses in radiation protection and the safety of radiation so curricula of educational institutions in Member States and to achieve both consistency and level in the technical content of such courses	ources into the

Teaching Scheme (Contact Hours)					Exa	mination Scheme		
				Theory	Marks	Practical Marks	Total	
Lecture	Tutorial	Lab	Credit	Credit	SEE	CIA		Marks
4	-	-	4.00	70	30	-	100	

 $\textbf{\textit{SEE}} - Semester \ End \ Examination, \textbf{\textit{CIA}} - Continuous \ Internal \ Assessment \ (It \ consists \ of \ Assignments/Seminars/Presentations/MCQ \ Tests, \ etc.)$

Cou	rse Content	T - Teaching Hours W -	Weig	htage
Sr.	Topics		Т	W
1	Air Pollution		15	25
		rigin, Environmental Pollution disasters, Classification of pollutants. Air pollution, Composition of air, due to sun light, Reactions in Troposphere, Stratosphere and mesosphere. Smog formation in air. Ma pollution		mical
2	Water Pollutar	nts And Their Properties	9	25
	point, Types of	ources of water, Chemistry of water, Definition of water pollution, Types of water pollution including water pollution (four types), Types of water pollution based on sources and storages (Five types). Go, Factor affecting the ground water pollution,	_	
3	Soil Pollution		9	25
	-	mportance and formation of soil, Composition of soil, Salt affected to soil, Sources of soil pollution, Sources of soil pollution, Sources of soil erosion, Mechanism of soil erosion, Factors affecting to soil erosion	oil er	osion
4	Radioactive Po	llution	9	25
	1	low radioactive pollution differs from other pollution. Types and unit of radiation, Radiation chemistr onising radiation with matter, Principal Types of radiation	у,	
	•			

Suggested Distr	ibution Of Theory	Marks Using Bloo				
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	30	30	10	10	20	0

RU - RSS - M.Sc. | RU - M.Sc. - Organic Chemistry - (2023-24)

Semester: 3

Cour	se Outcomes					
At the	At the end of this course, students will be able to:					
CO1	1. Learn the en	vironment functions and how it is affected by human activities				
CO2	2. Evaluate by a	applying numerical and statistical methods				
CO3	3. Understand to production	the issues more visible and solve problems, particularly in relation to environmental problems and metal				
CO4	4. Recognize an	nd describe the impact of soil pollution on the environment				

Refe	erence Books
1.	Environmental studies S.V.S Rana S.V.S Rana
2.	The Environment (Protection) Act, 1986
3.	The Handbook of Environmental Chemistry S. Agbo et al.; Springer Heidelberg Dordrecht London New York

06100304-ORGANIC CHEMISTRY-VI

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	Core Course	
Prerequisite	-	
Course Objective	1 To provide the basic knowledge of Research & Methodology 2 To Learn about the main types of probability and non-probability sample designs 3 To familiarize participants with basic of research and the research process 4 To provide a basic understanding of data analysis using statistics and to use computation problems of applied nature	nal tools on

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA	-	Marks
4	-	-	4.00	70	30	_	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Wei	ghtag
Sr.	Topics		Т	W
1	Sample Design	ing	15	25
		nple survey, Implications of a sample design. Steps in Sampling design, Criteria of selecting a sampli Iracteristics of good sample design. Different types of sample design, Random sample from an infini	_	
2	Measurement	and scaling techniques	9	25
	measurement,	in research, Measurement research, Measurement scales, Sources of error in measurement, tests of technique of developing Measurement tools, Scaling, meaning of scaling, Scale classification bases, I ues, Scale construction techniques		
3	Methods Of Da	rta Collection	12	25
	•	rimary data, observation method, Interview method, Collection of data through Questionnaires, Collection of collection of secondary data, selection of appropriate method for data collection12	ectio	n of
4	Processing and	Data Analysis	9	25
	•	rations, statistics in research, measures of dispersion, measures of asymmetry, measures of relation on analysis, Multiple correlation and regression, Partial Correlation, Association in case of Attributes		

Suggested Distr	Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level	Understanding	Application	Analyze	Evaluate	Create			
Weightage	10	20	30	20	20			

Cour	se Outcomes					
At the	At the end of this course, students will be able to:					
CO1	1. Categorizes a	and defines the sampling methods				
CO2	Develop unders	standing on various kinds of research, objectives of doing research, research process, research designs and				
CO3	3. Learn the me	ethods to collect research data through different methods. Also understand role of computer in research				
CO4	4. Gain the kno	wledge of processing data and understand the guidelines of thesis writing.				
CO5	Evaluate Resea	rch data				

Reference Books

1.	Research Methodology
	C. R. Kothari; New Age International Publishers
2.	Research Methodology
	D K Bhattacharya; Excel Books, New Delhi.

06100305-ORGANIC CHEMISTRY PRACTICAL

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	-	
Prerequisite	-	
Course Objective	To prepare standard solutions To know about the Use of burettes, pipettes and other glass apparatus To know about the estimation of amount of unknown sample and the number of functional unknown organic compound. To develops the isolation techniques for organic molecules from their sources To understand the concept of chromatography	Il groups in an

Teaching Scheme (Contact Hours)					Exa	mination Scheme		
				Theory	Marks	Practical Marks	Total	
Lecture	Tutorial	Lab	Credit				Total Marks	
-	-	16	8.00			200	200	

 $\textbf{\textit{SEE}} - Semester \ End \ Examination, \textbf{\textit{CIA}} - Continuous \ Internal \ Assessment \ (It \ consists \ of \ Assignments/Seminars/Presentations/MCQ \ Tests, \ etc.)$

Cou	rse Conte	ent		${f T}$ - Teaching Hours $ {f W} $	Wei	ghtag
Sr.	Topics				Т	w
1	Organio	Chemi:	stry Practical SEM III		16	100
	List of P	Practical	: Organic Separation			
	1.	Salicylic	acid, resorcinol,Benzamine			
	2.	Succinio	acid, O-nitro aniline, acetanilide			
	3.	Aceton	e, Toluene, Benzaldehyde			
	4.	Benzoio	acid,chloro-form,Nitrobenzene			
	5.	Succinio	acid, B-napthol, Acetanilide			
	6.	Thioure	a, Benzoic acid, P-toludine.			
	ORGA	NIC PRE	PARATION			
	1.	To prep	are anthranilic acid from phthalic acid			
	2.	To prep	are Organge-II from sulphanilic acid			
	3.	To prep	are eosine from phthalic acid			
	4.	To prep	are sulphanilic acid from aniline.			
	Estima	ation				
	1.	% Purity	of the given sample Vit.C			
	% Purit	y of the	given sample glycine			
	1			Total	16	100

Suggested Distr	ibution Of Theory					
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	10	20	30	20	10	10

Cour	rse Outcomes				
At the	At the end of this course, students will be able to:				
CO1	Know calibration	n of pipettes and burettes, preparation of standard solutions			
CO2	Understand the concept of titrimetric quantitative estimations				
CO3	Prepare standard solutions				
CO4	Develops the extraction techniques for organic molecules from plant materials.				
CO5	Develops the settechnique.	eparation techniques for a mixture of organic molecules and drug materials through chromatographic			

Reference Books

1.	Practical Organic Chemistry (TextBook) Frederick George Mann, Bernard Charles Saunders; Longman
2.	Practical Organic Chemistry (TextBook) Frederick George Mann, Bernard Charles Saunders; Longman
3.	Advanced Practical organic chemistry (TextBook) N. K. Vishnoi; Vikas Publishing House,

List of Practical

1.	Organic Separation
	Salicylic acid, resorcinol,Benzamine
2.	Organic Separation
	Succinic acid, O-nitro aniline, acetanilide
3.	Organic Separation
	Acetone, Toluene, Benzaldehyde
4.	Organic Separation
	Benzoic acid, chloro-form, Nitrobenzene
5.	Organic Separation
	Succinic acid, B-napthol, Acetanilide
6.	Organic Separation
	Thiourea, Benzoic acid, P-toludine.
7.	ORGANIC PREPARATION
	To prepare anthranilic acid from phthalic acid
8.	ORGANIC PREPARATION
	To prepare Organge-II from sulphanilic acid
9.	Organic Preparation
	To prepare eosine from phthalic acid
10.	Organic Preparation
	To prepare sulphanilic acid from aniline.
11.	Estimation
	% Purity of the given sample Vit.C

 \mbox{RU} - \mbox{RSS} - $\mbox{M.Sc.}$ | \mbox{RU} - $\mbox{M.Sc.}$ - $\mbox{Organic Chemistry}$ - (2023-24)

Semester: 3

12. Estimation

% Purity of the given sample glycine

Total 45

100

Semester: 3

06100321-FUNDAMENTALS OF INDUSTRIAL CHEMISTRY

Course	Master of Science (M.Sc.) Semester - 3			
Type of Course	urse Core Course			
Prerequisite	-			
Course Objective	1. The aim of this course is to make students aware of different industrial processes in deta 2. This course is basically designed to understand the chemistry of the industrial processes Purification techniques, handling of important gases, acids, bases, pollutants, Industrial eff water treatment 3. The analytical approach of this course is to enhance the reasoning and to understand the part of the industry 4. The aim of this course is that the students will learn the conventional and latest technique abatement of environmental pollution (air, water and industrial effluents).	like luent and e mechanical		

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA	_	Marks
4	-	-	4.00	70	30	-	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

	rse Content	T - Teaching Hours W -	Weig	htag
Sr.	Topics		Т	W
1	Chemical Techr	nology Basic principles of distillation	15	30
	introduction int	on, solid-liquid leaching and liquid-liquid extraction, separation by absorption and adsorption. An to the scope of different types of equipment needed in chemical technology, including reactors, distiplers, pumps, mills, emulgators. Scaling up operations in chemical industry	llatic	n
2	Industrial Gase	s and Inorganic Chemicals	15	3!
3	chemicals: hydr thiosulphate, h	istrial preparation with the help of flowchart, application, analysis and hazards in handling the follow cochloric acid, nitric acid, sulphuric acid, caustic soda, common salt, borax, bleaching powder, sodium ydrogen peroxide, potash alum, chrome alum, potassium dichromate and potassium permanganate	m	
	Environment		15	3

Suggested Distri	Suggested Distribution Of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Analyze	Create			
Weightage	20	20	40	20			

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Or	utcomas

At the	At the end of this course, students will be able to:					
CO1	Analyze various purification techniques used in industries like distillation, absorption, adsorption and solvent extraction					
CO2	Explain the production, storage and handling of important gases like-oxygen, argon, helium, hydrogen and acetylene					
CO3	Develop efficacy in preparation of frequently used inorganic chemicals like acids, bases, oxidizing and disinfecting chemicals					
CO4	Reframe the qualitative and quantitative measurements of water treatment, conservation and handling of industrial effluent					
CO5	Analyze major causes of air pollution, its control and the alarming problems of global warming					

Reference Books

erence Books
Stocchi, E.(1990), Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK (TextBook) Ellis Horwood Ltd. UK
Kent, J. A. (ed) (1997), Riegel's Handbook of Industrial Chemistry, CBS Publishers, New Delhi) (TextBook) Kent J A
Pani, B. (2017), Textbook of Environmental Chemistry, I.K.International Publishing House (TextBook) Pani,B.
De, A. K. (2012), Environmental Chemistry, New Age International Pvt, Ltd, New Delhi (TextBook) De, A.K.
Chemical Technology: From Principles to Products, 2nd Edition
Industrial Inorganic Chemicals: Production and Uses Edited by R. Thompson

06100322-INDUSTRIAL SPECTROSCOPIC TECHNIQUES

Course	laster of Science (M.Sc.) Semester	
Type of Course Discipline Specific Elective Course		
Prerequisite -		
Course Objective	 Spectroscopic methods of analysis Atomic spectroscopy types and its applications 1H NMR instrumentation and its applications 	

Teaching Scheme (Contact Hours)				Exar	mination Scheme		
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA		Total Marks
4	-	-	4.00	70	30		100

 $\textbf{\textit{SEE}} - Semester \ End \ Examination, \ \textbf{\textit{CIA}} - Continuous \ Internal \ Assessment \ (It \ consists \ of \ Assignments/Seminars/Presentations/MCQ \ Tests, \ etc.)$

Cou	rse Content	T - Teaching Hours W -	Wei	ghtag
Sr.	Topics		Т	W
1	An introduction	n to Spectroscopic Methods of Analysis	15	30
	separation by p	hy: Classification, theories of chromatographic methods, principles and methods of chromatograph paper, TLC, preparative TLC, HPTLC, column, HPLC, gas chromatography and ion-exchange chromatog n of HPLC and GC, types of columns and detectors for GC, Applications of chromatographic methods GC-MS, LC-MS technique.	graph	ıy.
2	Atomic Absorp	tion Spectroscopy (AAS)	15	25
	1 // 1	pplications. Fluorescence and Phosphorescence : Basic principles filter fluorometer and double bear		
3	materials.	or instruments, working, analysis of rare earths, pharmaceuticals, optical brightness, ultra trace anal		
3	materials. Mass Spectrom Introduction, Ic		15 tope	20 ions,
3	materials. Mass Spectrom Introduction, Ic	netry on formation, Mass spectral fragmentation of organic molecules, Mac-Lafferty, rearrangement of isc ne moss spectral fragmentation of organic molecule for structure determination. Mössbauer Spectr rinciple, Mössbauer nuclides, parameters required for evaluation, instrumentation, applications.	15 tope	20 ions,

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy				
Level	Understanding	Application	Evaluate	Create
Weightage	40	20	20	20

Cour	Course Outcomes					
At the	At the end of this course, students will be able to:					
CO1	CO1 Explain the different types of spectroscopic methods of analysis					
CO2	Designing of standard and blank solutions					
CO3	CO3 Differentiate the calibration of Various instruments					
CO4	CO4 Explain the instrumentation and the applications of the UV- Visible, Atomic, IR, 1H NMR spectrometry					
CO5	CO5 Apply the knowledge of various spectroscopic techniques for the structure determination					

Ref	erence Books
1.	Kemp, W. (1991), Organic Spectroscopy, Palgrave Macmillan (TextBook) Kemp, W. (1991),
2.	Dyer, J.R. (1978), Applications of Absorption Spectroscopy of Organic Compounds, Prentice Hall (TextBook) Dyer, J.R. (1978),
3.	Banwell, C.N. (2006), Fundamentals of Molecular Spectroscopy, Tata McGraw-Hill Education (TextBook) Banwell, C.N. (2006)
4.	Chromatography: Concepts and Contrasts Author(s): James M. Miller James M. Miller
5.	Atomic Absorption Spectrometry; Author(s):. Dr. Bernhard Welz, Dr. Michael Sperling Dr. Bernhard Welz, Dr. Michael Sperling
6.	Interpretation of Mass Spectra by Fred W. McLafferty, Frantisek Turecek (Contributor), John Choi (Illustrator) W. McLafferty, Frantisek Turecek (Contributor), John Choi (Illustrator)

06100323-SYNTHETIC DYES AND POLYMER CHEMISTRY

Course	Master of Science (M.Sc.)				
Type of Course Core Course					
Prerequisite	-				
Course Objective	 The primary objective of this paper is to help the student to know about the synthesis. The Properties and applications of polymers and Industrial Dyes. Understand the basics behind the coloring agents and brighteners Know the various applications of polymers 				

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA		Marks
4	-	-	4.00	70	30		100

SEE - Semester End Examination, **CIA** - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Weig	şhtag
Sr.	Topics		Т	W
1	Introduction &	Near Infrared Absorption (NIR) dyes:	15	30
	· ·	mical chromophores of dyes. Classification of dyes. Description of individual class and principle applicant the interest of dyes and principle applicant infrared Absorption (NIR) dyes Introduction, Cyanine type chromophores, donor-acceptor chromograms.		
2	Synthesis of fu	nctional dyes Fluorescent brightening agents	9	25
		tal design. Characteristics and synthesis of functional dyes for electro-optical applications. Characteri ents and its applications	stics	of
3	Industrial Poly	mers	12	20
	A. Basic Conce	pts of Polymers		
	History, Trends	, and General Polymer Background, Concept of functionality and reactivity, Degree of polymerization.		
	B. Techniques	of Polymerization		
		Emulsion, Suspension and Interfacial polymerization, addition, condensation, mechanism of polymer nic (anionic and cationic), co-ordination polymerization, initiators, inhibitors.	izatio	on –
4	General Chemi	stry, Technology of Production, Properties and Applications of Chain growth polymers	12	25

 \mbox{RU} - \mbox{RSS} - $\mbox{M.Sc.}$ | \mbox{RU} - $\mbox{M.Sc.}$ - $\mbox{Industrial Chemistry}$ - (2023-24)

Semester: 3

- a. Polyethylene (HDPE, MDPE, LDPE, LLDPE, UHMWPE, chlorinated PE),
- b. Polypropylene (PP)
- c. Polyisobutylene (PIB)
- d. Acrylics (PMMA & PAN)
- e. Polyvinyles (PVC, PVDC & CPVC)
- f. Polystyrene & copolymer (HIPS, SBR, SAN & ABS)
- g. Poly(vinyl acetate)

Total 48 100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy							
Level	Understanding	Application	Analyze	Evaluate	Create		
Weightage	20	20	20	20	20		

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

At the	At the end of this course, students will be able to:				
CO1	O1 Classify dyes based on the functional groups				
CO2	D2 Explain Fluorescent brightening agents				
CO3	O3 Differentiate polymeric materials and their history				
CO4	Apply different mechanisms of polymerization and polymerization techniques				
CO5	Compare between polymers and copolymers				

1.	S.V.S Rana, Col	our Chemistry: Synthesis, properties and applications of organic dyes and pigments (TextBook)
2.	-	our Chemistry: Synthesis, properties and applications of organic dyes and pigments A.T. Peters and H. S. ger Netherlands (TextBook)
3.	Daly Synthesis	- Stanley R. Sandler, Wolf Karo, Vol. 1, Academic Press, Inc., California, 1994 (TextBook)

06100324-PROCESS DEVELOPMENT IN CHEMICAL **INDUSTRIES**

Course	Master of Science (M.Sc.)	Semester - 3		
Type of Course Discipline Specific Elective Course				
Prerequisite	-			
Course Objective	 The course covers the chemical process industries Manufacturing of various chemicals Fermentation and vulture development of various micro-organisms Awareness of electro -thermal industries among the students 			

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIA		Total Marks
4	-	-	4.00	70	30		100

 $\textbf{\textit{SEE}} - Semester\ End\ Examination,\ \textbf{\textit{CIA}} - Continuous\ Internal\ Assessment\ (It\ consists\ of\ Assignments/Seminars/Presentations/MCQ\ Tests,\ etc.)$

Cou	rse Content	T - Teaching Hours W -	Weig	htage
Sr.	Topics		Т	W
1	Overview of Ch	nemical Industries	10	25
	Introduction, c	lassification of chemical industries, material of construction, process instrumentation, safety, fire proosal	otecti	on
2	Acid industries		15	25
2	Manufacture, propylene glyc		d	
3	industriai sodi	um compounds	15	25
	chlorinated co	properties and uses of sodium thiosulfate, sodium bromide, sodium sulfate and sodium sulfite Halog ompounds Introduction, manufacture, properties and uses of fluorine, bromine, iodine, chlorine, metoromethane, chloroform and carbon tetrachloride		nd
4	Electro-therma	l industries	10	25
	carbon electro	lassification and advantages of electric furnace. Manufacture of silicon carbide, calcium carbide, grap des Industrial solvents Synthesis and properties of dimethylformamide (DMF),dimethyl sulfoxide (D n, dimethyl ether and diethyl ether		

Suggested Distr	ibution Of Theory				
Level	Remembrance	Understanding	Analyze	Evaluate	Create
Weightage	20	20	20	20	20

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cour	se Outcomes						
At the	At the end of this course, students will be able to:						
CO1	Explain the sy	nthesis, industrial manufacturing and safety of various compounds					
CO2	CO2 Explain the synthesis, industrial manufacturing and safety of various compounds						
CO3	CO3 Summaries the process of fermentation and its products						
CO4	Analyze Various applications of industrial sodium compounds, halogens and chlorinated compounds and industrial solvents						
CO5	CO5 Distinguish the electro-thermal industries with chemical industries and introduction of various furnaces						

Reference Books 1. R1: - Industrial Chemistry: Being a Series of Volumes Giving a Comprehensive Survey of the Chemical Industries :- Chemistry, Process Design, and Safety for the Nitration Industry Editor(s): Thomas L. Guggenheim1 2. 3. The 100 Most Important Chemical Compounds: A Reference Guide Richard L. Myers Industrial microbiology by A.H.Patel (TextBook) 4.

06100325-INDUSTRIAL CHEMISTRY PRACTICAL

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	-	
Prerequisite	-	
Course Objective	-	

Teaching Scheme (Contact Hours)					Exa	mination Scheme		
				Theory Marks		Practical Marks	Total	
Lecture	Tutorial	Lab	Credit	SEE	CIA		Total Marks	
-	-	12	6.00	-	-	150	150	

 $\textbf{\textit{SEE}} - Semester \ End \ Examination, \textbf{\textit{CIA}} - Continuous \ Internal \ Assessment \ (It \ consists \ of \ Assignments/Seminars/Presentations/MCQ \ Tests, \ etc.)$

List of	f Practical						
1.	Determination	Determination of dissolved oxygen in water.					
2.	Determination	of Chemical Oxygen Demand (COD)					
3.	Determination	of Biological Oxygen Demand (BOD)					
4.	Percentage of a	available chlorine in bleaching powder					
5.	Measurement chromate)	of chloride, sulphate and salinity of water samples by simple titration method. (AgNO3 and potassium					
6.	Estimation of t	otal alkalinity of water samples (CO32-, HCO3-) using double titration method.					
7.	Isolation of cor	npound using solvent extraction method					
8.	Verification of	Lambert-Beer's law using UV-Vis spectrophotometer for CuSO4 solution					
9.	Determination	of Acidity of water sample					
10.	Determination	of Acidity of water sample					

06100326 - PROJECT WORK / INTERNSHIP (PW)					
Course	Master of Science (M.Sc.)	ter - 3			
Type of Course	Project Work				
Prerequisite	-				
Course Objective	To train students to conduct independent studies on a topic of relevance and deliver a seminar To choose a topic of relevance and conduct an independent study. To submit a report and present the same				

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme		
				Theory Marks		Practica	l Marks	Total	
Lecture	Tutorial	Lab	Credit	SEE	CIA			Total Marks	
-	-	4	2.00	-	-	50	-	50	

 $\textbf{\textit{SEE}} - Semester \ End \ Examination, \textbf{\textit{CIA}} - Continuous \ Internal \ Assessment \ (It \ consists \ of \ Assignments/Seminars/Presentations/MCQ \ Tests, \ etc.)$

Cou	rse Content	T - Teaching Hours W -	Weig	ghtag
Sr.	Topics		Т	w
1	Selection of in	dustry/Organisation		
	Choose a relev	ant industry/business organisation/research organisation/ University		
2	Internship			
	Undergo interr	nship		
3	Making Repor			
	Prepare a scier	ntific report and give a presentation on the same topic		
		Total		

Suggested Distr	ibution Of Theory				
Level	Understanding	Application	Analyze	Evaluate	Create
Weightage	30	20	30	10	10

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cour	se Outcomes					
At the	At the end of this course, students will be able to:					
CO1	Write a report	on experiences during internship				
CO2	Make a present	tation to a panel of examiners				

Reference Books

- Research methodology (TextBook)
 Kothari C R; NAIP; 2, 2004
- How to research (TextBook)
 Blaxter Loraine; Viva book; 2nd, 2002

List of Practical

06100311-ANALYTICAL CHEMISTRY-III

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	Discipline Specific Elective Course	
Prerequisite	-	
Course Objective	To investigate the mixtures and spectroscopic methods To understand the concepts of solute, solvent, compound, element, and mixture based on and physical properties. To Define Fundamentals of Mass Spectrometry To learn the analysis of metals in solution using spectroscopic technique by Flame adsorption to learn the concept of emits light through a process of optical amplification based on the semission of electromagnetic radiation.	on

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory Marks		Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Marks
4	-	-	4.00	70	30	-	100

 $\textbf{\textit{SEE}} - Semester\ End\ Examination,\ \textbf{\textit{CIA}} - Continuous\ Internal\ Assessment\ (It\ consists\ of\ Assignments/Seminars/Presentations/MCQ\ Tests,\ etc.)$

Cou	rse Content	T - Teaching Hours W -	Weig	ghtag
Sr.	Topics		Т	W
1	Atomic Absorp	tion Spectrometry	12	25
	Introduction, B Developments,	asic Principles, Instrumentation, Interferences, Techniques for Quantification of Elements, Recent Applications		I
2	ICP (Inductive	coupled Plasma)	9	20
	ICP-AES, ICP-M	S, Operation and Applications		
3	MASS Spectros	сору	15	30
	meta stable pe fragmentation	nentation and modifications; Unit mass and molecular ions; Important terms-singly and doubly charg ak, base peak, is otropic mass peaks, relative intensity, etc.; Recognition of M+ion peak; General rules: Fragmentation of various classes of organic molecules, including compounds containing oxygon en and halogens; α-, β-, allylic and benzylic cleavage		ons,
4	Lasers		9	25
	of laser light an	er operation; Stimulated emission Population inversion, Single level and multi level laser systems, Production its general and analytical applications; ruby laser, nitrogen laser, dye laser, Use of laser radiation fluorescence spectroscopic methods	-	ies
		Total	45	100

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy

RU - RSS - M.Sc. | RU - M.Sc. - Analytical Chemistry - (2023-24)

Semester: 3

Level	Understanding	Application	Analyze	Evaluate
Weightage	10	30	20	20

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

RU - RSS - M.Sc. | RU - M.Sc. - Analytical Chemistry - (2023-24)

Semester: 3

Cour	Course Outcomes						
At the	At the end of this course, students will be able to:						
CO1	CO1 Students can describe the principles of lasers						
CO2	Apply skill to find the wavelength of spectral lines using plane diffraction grating						
CO3	Describe and explain the principle of operation of modern chromatographic instrumentation						
CO4	Distinguish the	methods of polarization by reflection, refraction and scattering					
CO5	Students can explain the principle and applications of atomic spectroscopy						

100

Total

06100312-ANALYTICAL CHEMISTRY-IV

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	Discipline Specific Elective Course	
Prerequisite	-	
Course Objective	 Separation techniques are the basis of instrumental analysis widely applied in industry, objective interpretation in the properties of compounds. To describe the methods used in the analysis of compounds. To explain the chemistry behind the methods of analysis of compounds. To identify which method is more effective for the analysis of compounds. 	hemistry,

Teaching Scheme (Contact Hours)				Examination Scheme			
				Theory Marks		Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Marks
4	-	-	4.00	70	30	-	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Weig	htag		
Sr.	Topics		Т	W		
1	Chromatograp	hy-1	15	25		
	TLC, HPTLC, Paper Chromatography. (Basic information, Working Applications in separation, Instrumentation, purification and identification)					
2	Chromatograp	ny-2	9	25		
	HPLC, Gas Liqui applications)	d Chromatography (types of columns, packed columns, Capillary columns, Bonded phase columns, A	Advan	ced		
3	Chromatograp	ny -3	12	25		
	Column Chrom	atography, Sixe Exclusion Chromatography, Ion Exchange Chromatography				
4	Electrophoresi	5	9	25		
		, Agarose Gel Electrophoresis – Gel, Instrumentation, separation of molecules and analysis, Polyacro rylamide gel electrophoresis- Gel, Instrumentation, Separation of molecules and analysis., Isoelectric esis	•			

Suggested Distr	ibution Of Theory				
Level	Understanding	Analyze	Evaluate	Create	
Weightage	10	20	30	30	10

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may a student of the students and the teachers. The actual distribution of marks in the question paper may a student of the students and the teachers. The actual distribution of marks in the question paper may a student of the students and the teachers. The actual distribution of marks in the question paper may a student of the students and the teachers. The actual distribution of marks in the question paper may a student of the students and the teachers. The actual distribution of marks in the question paper may a student of the students and the teachers. The actual distribution of marks in the question paper may a student of the students and the students are a student of the students and the students are a student of the students and the students are a student of the students and the students are a student of the students and the students are a student of the students and the students are a students and the students are a students as a student of the students are a student of the students and the students are a students as a student of the students are a student of the students are a students as a student of the students are a students as a student of the students are a student of the students and the students are a student of the students and the students are a student of the students are a students are a student of the students are a students arevary slightly from above table.

Course Outcomes

Cour	se Outcomes					
At the	At the end of this course, students will be able to:					
CO1	1. Provide theoretical as well as a practical introduction to principles and techniques of chromatography					
CO2	2. Explain the pr	rinciples of the most important liquid and gas chromatographic as well as electro-migration techniques				
CO3	3. Evaluate strer to the propertie	ngths and limitations of the most important chromatographic separation and detection methods in relation es of the sample and of the analysis task				
CO4	4. Understand p techniques	rinciples and their practical application in publications describing chromatography or electro-migration				
CO5	Examine the exp	periment of chromatographic and electrophoresis technique				

Reference Books							
	D -	£			п		1
	KP	TPF	ρn	CP	к	nn	ĸς

1.	Analytical Chemistry Gary D. Christian John Wiley and Sons Inc. (TextBook) Gary D. Christian
2.	Analytical chemistry principles (TextBook) John H. Kennedy; Saunders College Pub.,
3.	Analytical chemistry principles (TextBook) John H. Kennedy: Saunders College Pub

06100313-ANALYTICAL CHEMISTRY-V

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	Core Course	
Prerequisite	-	
Course Objective	To understand the environment functions To analyze the statistical data for environment To understand the environmental problems To describe the impact of soil pollution on the environment	

Teaching Scheme (Contact Hours)				Examination Scheme			
				Theory Marks		Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Total Marks
4	-	-	4.00	70	-	-	100

 $\textbf{\textit{SEE}} - Semester\ End\ Examination,\ \textbf{\textit{CIA}} - Continuous\ Internal\ Assessment\ (It\ consists\ of\ Assignments/Seminars/Presentations/MCQ\ Tests,\ etc.)$

Cou	rse Content	T - Teaching Hours W - ¹	Weig	htage		
Sr.	Topics		Т	W		
1	Air Pollution		15	25		
	-	rigin, Environmental Pollution disasters, Classification of pollutants. Air pollution, Composition of air, due to sun light, Reactions in Troposphere, Stratosphere and mesosphere. Smog formation in air. Ma ollution		nical		
2	Water Pollutar	ts And Their Properties	9	25		
	point, Types of	ources of water, Chemistry of water, Definition of water pollution, Types of water pollution including water pollution (four types), Types of water pollution based on sources and storages (Five types). Go, Factor affecting the ground water pollution	•			
3	Soil Pollution		12	25		
	•	nportance and formation of soil, Composition of soil, Salt affected to soil, Sources of soil pollution, So gents of soil erosion, Mechanism of soil erosion, Factors affecting to soil erosion	il ero	sion		
4	Radioactive Po	llution	9	25		
	Introduction, How radioactive pollution differs from other pollution. Types and unit of radiation, Radiation chemistry, Interaction of ionising radiation with matter, Principal Types of radiation					
			y ,			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy								
Level	Evaluate							
Weightage	10	30	20	30				

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Gary D. Christian

Cour	se Outcomes							
At the	At the end of this course, students will be able to:							
CO1	1. Learn the en	vironment functions and how it is affected by human activities						
CO2	2. The environmental data is evaluated by applying numerical and statistical methods							
соз	3. Understand to production.	the issues more visible and solve problems, particularly in relation to environmental problems and metal						
CO4	4. Recognize an	nd describe the impact of soil pollution on the environment.						

COT	T. NCCOSTILE UI	id describe the impact of soil politicion on the chivilionnent.
Refe	erence Books	
1.	_	nistry principles (TextBook) dy; Saunders College Pub.,
2.	_	nistry principles (TextBook) ly; Saunders College Pub.,
3.	Analytical Che	mistry Gary D. Christian John Wiley and Sons Inc. (TextBook)

Total 45

100

Semester: 3

06100314-ANALYTICAL CHEMISTRY-VI

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	Core Course	
Prerequisite	-	
Course Objective	 5 To provide the basic knowledge of Research & Methodology 6 To Learn about the main types of probability and non-probability sample designs 7 To familiarize participants with basic of research and the research process 8 To provide a basic understanding of data analysis using statistics and to use computation problems of applied nature 	al tools on

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	/ Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Marks
4	-	-	4.00	70	30	-	100

SEE - Semester End Examination. CIA - Continuous Internal Assessment (It consists of Assianments/Seminars/Presentations/MCO Tests, etc.)

Course Content T - Teachin		T - Teaching Hours W	' - Weig	htage
Sr.	Topics		Т	W
1	Sample Design	ing	15	25
		mple survey, Implications of a sample design. Steps in Sampling design, Criteria of selecting a samparacteristics of good sample design. Different types of sample design, Random sample from an infin	-	/erse
2	Measurement	and scaling techniques	9	25
	measurement,	in research, Measurement research, Measurement scales, Sources of error in measurement, tests technique of developing Measurement tools, Scaling, meaning of scaling, Scale classification bases uses, Scale construction techniques		
3	Methods of da	ta collection	4.0	25
	6 II 6	ta collection	12	25
		rimary data, observation method, Interview method, Collection of data through Questionnaires, Co chedules, collection of secondary data, selection of appropriate method for data collection.		
4	data through so	rimary data, observation method, Interview method, Collection of data through Questionnaires, Co		

Suggested Distri	ibution Of Theory	Marks Using Bloo	m's Taxonomy	
Level	Evaluate			
Weightage	10	30	30	20

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cource	Outcomes
Course	Outcomes

CO1 Categorizes and defines the sampling methods

RU - RSS - M.Sc. | RU - M.Sc. - Analytical Chemistry - (2023-24)

Semester: 3

CO2	Develop understanding on various kinds of research, objectives of doing research, research process, research designs and sampling
CO3	Students can learn the methods to collect research data through different methods. Also understand role of computer in research
CO4	Student will gain the knowledge of processing data and understand the guidelines of thesis writing

06100315-P - ANALYTICAL CHEMISTRY PRACTICAL

Course	Master of Science (M.Sc.)	Semester - 3
Type of Course	Core Course	
Prerequisite	-	
Course Objective	To identify the accurate analytical method for a given sample to be analyzed. To analyze the principles, instrumentation and applications of spectroscopic methods To illustrate the principles and applications of chromatographic techniques To describe the different analytical methods and their applications in analysis of hazardous	chemicals

Teaching Scheme (Contact Hours)					Exa	mination Sch	eme	
				Theory	Marks	rks Practical		Total
Lecture	Tutorial	Lab	Credit	SEE	CIAs	SEE	CIAs	Marks
-	-	16	8.00	-	-	200	-	200

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Sr.	Topic	s		Т	w
1	Analy	tical Chemi	istry Practical	16	100
	List of	f Practical:			
	1.	To detern	nine the Saponification value of given sample of oil (coconut oil).		
	2.	To detern	nine the percentage purity of given sample of aspirin (estimation of Aspirin).		
	3.	To separa	ite the peracetamol and salicylic acid by TLC.		
	4.	To detern	nine the Saponification value of given sample of oil (castor oil).		
	5.	To detern	nine the amount of calcium in the given sample of milk powder.		
	6.	To detern	nine acid value of a given oil sample (coconut oil).		
	7.	To detern	nine acid value of a given oil sample (castor oil).		
	8.	To isolate	caffeine from commercial product by TLC		

Suggested Distr	ibution Of Theory				
Level	Remembrance	Understanding	Application	Analyze	Evaluate
Weightage	20	20	20	30	20

CO4 Illustrate the principles and applications of chromatographic techniques.

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes At the end of this course, students will be able to: CO1 Identify the accurate analytical method for a given sample to be analysed. CO2 Declare the principles and applications of different wet chemical methods. CO3 | Analyze the principles, instrumentation and applications of spectroscopic methods

RU - RSS - M.Sc. | RU - M.Sc. - Analytical Chemistry - (2023-24)

Semester: 3

CO5	State the principles and instrumentation of different extraction techniques
CO6	Describe the different analytical methods and their applications in analysis of hazardous chemicals

_	_
Reference	Daaka
Kelerence	DOOKS

- Analytical chemistry principles (TextBook)
 John H. Kennedy; Saunders College Pub.,
- 2. Analytical Chemistry Gary D. Christian John Wiley and Sons Inc. (TextBook)
 Gary D. Christian

List of Practical

LIST O	T Practical					
1.	To determine the Saponification value of given sample of oil (coconut oil).					
2.	To determine the percentage purity of given sample of aspirin (estimation of Aspirin).					
3.	To separate the peracetamol and salicylic acid by TLC.					
4.	To determine the Saponification value of given sample of oil (castor oil).					
5.	To determine the amount of calcium in the given sample of milk powder.					
6.	To determine acid value of a given oil sample (coconut oil).					
7.	To determine acid value of a given oil sample (castor oil).					
8.	To isolate caffeine from commercial product by TLC					

06100401-ORGANIC CHEMISTRY-VII

Course	Master of Science (M.Sc.)	Semester - 4
Type of Course	Discipline Specific Elective Course	
Prerequisite	-	
	To explain why enzymes are good biological catalysts To understand the use of enzymes.	
Course Objective	To provide the basic knowledge of metabolic reaction To describe the features that fats bring to foods.	

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory Marks		Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Marks
4	-	-	4.00	70	30	-	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Weig	thtage			
Sr.	Topics		Т	W			
1	Proteins and N	ucleic acids	15	30			
	Amino acids, structure, peptide bond, chemical bonds in protein structure, protein configuration (primary, secondary, and quaternary structure of protein) Nucleic acid: types, sugar, bases and phosphates in DNA & RNA, DNA: internucleous linkages, double helicle structure, types of DNA RNA: types of RNA (m RNA, t RNA, r RNA), difference between DNA &						
2	Lipids		9	20			
		y acids and its nomenclature, Saturated and unsaturated fatty acids, hydroxy fatty acids, cyclic fatty a of lipids. Simple lipids: Fats, oils & waxes Compound lipids: Phospholipids, Glycolipids.	cids,				
3	Enzymes		12	25			
	enzymes, Colloi	enclature and classification, Isoenzymes, Biological role of enzymes, Chemical nature and characteris dal Nature, Catalytic nature, Specifity of enzyme action, Thermolability, Reversibility of reaction, pH naelis Menten equation, Fischers lock & key model, Koshlands Induced fit model		of			
4	Metabolism an	d Metabolic Reaction	9	25			
		abolism, Metabolism of Carbohydrates (Glycolysis, Kerbs Cycle, oxidative phosphorylation, oxidative ylation) Metabolism of proteins(Urea cycle)					
		Total	45	100			

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy								
Level	Remembrance	Understanding	Application	Analyze				
Weightage	10	30	20	30				

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

F.A.Careyand R.J.Sundberg; Plenum Press

Course Outcomes

Coui	3c Outcomes				
At the end of this course, students will be able to:					
CO1	Describe the different levels of protein structure and their interdependence				
(())	Understand the different composition and roles of nucleic acids in the cell and their interactions with each other and with agents that cause DNA damage				
CO3	Be able to describe the basic properties of enzymes.				
CO4	Be able to describe the stages of the cell cycle.				

Reference Books

1.	A Textbook of Organic chemistry (TextBook)
	Arun Bahl, B.S. Bahl; S. Chand Publication
2.	Advanced Organic Chemistry (TextBook)
	March Jerry; Wiley Eastern Ltd. New Delhi (1985).; 4
3.	Advanced Organic Chemistry: Reactions, Mechanisms and Structure (TextBook)
	J. March. Wiley
4.	Advanced Organic Chemistry Part –B (TextBook)

06100402-ORGANIC CHEMISTRY-VIII

Course	Master of Science (M.Sc.)	Semester - 4	
Type of Course	Discipline Specific Elective Course		
Prerequisite	-		
	To provide the basic and advanced knowledge of very useful concepts of Advanced Me Chemistry.		
 To learn the main differentiating property, use or side effect for the Nonsteroidal asp To understand concerns for toxicity of NSAIDs in those with compromised renal or liv To provide the knowledge of epidemiology, causes, and management of febrile seizu 			

Teaching Scheme (Contact Hours)					Exa	mination Scheme		
				Theory Marks		Practical Marks	Total	
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Marks	
4	-	-	4.00	70	30	-	100	

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Course Content		T - Teaching Hours W -	Wei	ghtage
Sr.	Topics		Т	W
1	Introduction, c	assification, synthesis and SAR of old and new drugs	15	30
		notics and Anxiolytics: Phenobarbital, diazepam, bromazepam, Anticonvulsants: Hydantoins, vigaba ium valproate, denzimol, zonisamide	trin,	
2	Miscellaneous	CNS drugs	12	20
	Levodopa, carb	idopa, mefanicin, baclofen, milameline, ecopizil. Diuretics: Acetazolamide, methazolamide		
3	Antihyperlipide	mics	9	25
	Fluvastatine, be	enzafibrate Antihypertensive: methyldopa, propranolol		
4	Antipyretics an	d NSAIDS	9	25
	Aspirin, salsala	ate, diflunisil, paracetamol		
	Narcotic Anal	gesics: Levallorphan, mepiridine		
		Total	45	100

Suggested Distr						
Level	Evaluate					
Weightage	Weightage 30 30 30					

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the end of this course.	students will be able to:

- CO1 Students can understand the historical and advance concept of medicinal chemistry and its advantages.
- CO2 Provide information on acute, chronic and post-surgical pharmacological pain relief using a multidisciplinary approach.
- CO3 provide a review of pharmacological options and their uses for effective relief of acute or chronic pain
- Provide the fundamental principles of molecular structure and shape as they relate to organic molecules having a medicinal properties and their application to human anatomy

Reference Books

1. A Textbook of Organic chemistry (TextBook)

Arun Bahl, B.S. Bahl; S. Chand Publication

2. "The organic Chemistry of Drug Design and Drug Action" (TextBook)

Silverman R.B; Academic Press New York

3. Advanced Organic Chemistry (TextBook)

March Jerry; Wiley Eastern Ltd. New Delhi (1985).; 4

4. Advanced Organic Chemistry Part –B (TextBook)

F.A.Careyand R.J.Sundberg; Plenum Press

06100403-ORGANIC CHEMISTRY-IX

Course	Master of Science (M.Sc.) Semester - 4	1
Type of Course	Core Course	
Prerequisite	-	
Course Objective	 To develops the skills needed to design separation and heat transfer processes and to size/optimize related equipment. Understand general design considerations involving process design development To impact knowledge about biological and biochemical technology, with a focus on biological product the design and operation of industrial practices. To explain the major difference between organic and inorganic chemistry. 	is,

Teaching Scheme (Contact Hours)					Exa	mination Scho	eme		
			Theory Marks		Practical Marks		Tatal		
Lecture	Tutorial	Lab	Credit	SEE	CIAs	SEE	CIAs	Total Marks	
4	-	-	4.00	70	30	-	-	100	

 $\textbf{\textit{SEE}} - Semester\ End\ Examination,\ \textbf{\textit{CIA}} - Continuous\ Internal\ Assessment\ (It\ consists\ of\ Assignments/Seminars/Presentations/MCQ\ Tests,\ etc.)$

Cou	rse Content	T - Teaching Hours W -	Wei	ghtage				
Sr.	Topics		Т	W				
1	Unit Processes	& Unit Operations	9	20				
	Introduction, Nitration, Helogenation, Amination by reduction sulfonation and sulfation, hydrogenation							
2	Fermentation		9	25				
		onditions favorable for fermentation, characteristics of enzymes. Manufacture of beer, Fermentation f Spirit, manufacture of wine, manufacture of vinegar, manufacture of power alcohol, Ethyl alcohol f		Vort,				
3	Synthetic Dyes		15	25				
	Direct dyes, ModyesMethyl C	omenclature Dyeing, Basic operations in dying, Due intermediates. Classification of dyes,Acid dyes, Bordant dyes, Lakes, Vat dyes, Ingrain dyes, sulphur dyes, pigment dyes, solvent or spirit soluble dyes, Drange, Diphenyl methane dyes, Mordant, azodyes. Thiazole dyes, Anthraquinone dyes, Indigoids, Xayes. Application Of Dyes	food					
4	Reactions Of A	lkanes And Cycloalkanes	12	30				
		ning reactions. Catalytic alkylation, catalytic isomerization, Catalytic reforming, catalytic cracking, Petrochemical processes Thermal cracking for alkenes, Acetylene processes Catalytic reforming for a ng	roma	atics,				
	-1	Total	45	100				

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy								
Level Understanding Analyze Evaluate								
Weightage	40	10	50	Ì				

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

_		_			
Cou	rca	<i>(</i>).	1+~	٦m	00
LUU	136	UL	1666	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Cour	se outcomes					
At the	At the end of this course, students will be able to:					
CO1	Understand the basic concepts of process design development and general design considerations					
CO2	Evaluate factors that contributes in enhancement of cell and product formation during fermentation process					
CO3	Understand the basics of dyestuff industry in terms of raw materials utilized.					
CO4	Know the various technology and safety aspects for reactions.					

Reference Books

1.	A Textbook of Organic chemistry (TextBook)
	Arun Bahl, B.S. Bahl; S. Chand Publication

2. Advanced Organic Chemistry Part –B (TextBook)

F.A.Careyand R.J.Sundberg; Plenum Press

3. Advanced Organic Chemistry: Reactions, Mechanisms and Structure (TextBook)

J. March. Wiley

4. Organic Chemistry (TextBook)

P. L. Soni; Sultan Chand & Sons

100

60

Total

06100404-ORGANIC CHEMISTRY-X

Course	Master of Science (M.Sc.)	Semester - 4
Type of Course	Core Course	
Prerequisite	-	
Course Objective	 To provide the basic knowledge of Research & Methodology Students should know why educational research is undertaken, and the audiences that research studies. To identify the overall process of designing a research study from its inception to its re To know the primary characteristics of quantitative research and qualitative research. 	eport

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory		Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE CIAs			Marks
4	-	-	4.00	70	30	-	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Course Content		T - Teaching Hours W - V							
Sr.	Topics		Т						
1	Methods of Da	ta Collection	15	25					
	data through so	Collection of primary data, observation method, Interview method, collection of data through questionnaires, collection of data through schedules, difference between questionnaires and schedules, some other method of data collection, collection of secondary data, selection of appropriate method for data collection, role of computer in research							
2	Processing And	analyzing data	15	25					
3	measures of dis and regression, writing, guideli	rations, solving problems in processing, types of analysis, statistics in research, measures of central to persion, measures of asymmetry, measures of relationship, simple regression analysis, multiple compartial correlation, association in case of attributes, significance of writing thesis, different types of mes of writing good thesis.	relati resea	on arch					
3	Research Meth	odology	15	25					
	research, resea	earch, Objectives of research, motivation in research, Types of research, Research Approaches, signif rch method vs methodology, research and scientific method, importance of knowing how research i ss, criteria of good research, problems encounter by researchers in india							
4	Defining Resea	rch Problem	15	25					
	problem, an illu	h problem?, selecting the problem, necessity of defining the problem, Technique involved in definin stration, conclusion Research Design: Meaning of research design, need for research design, feature nt concepts relating to research design, different research designs, basic principles of experimental	s of g						

Suggested Distr				
Level	Remembrance	Remembrance Understanding Ap		Analyze
Weightage	10	40	20	30

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cour	se Outcomes				
At the	At the end of this course, students will be able to:				
CO1	Learn the basic Introduction of Objective of research				
CO2	Learn to define a research problem.				

CO3 Analyze the method of data collection

CO4 Understand the concept of how to write a research report and thesis.

Reference Books

1.	Advanced Organic Chemistry: Reactions, Mechanisms and Structure (TextBook)						
	J. March. Wiley						

2. Hand book of Research Method (TextBook)

Sproull; Scarecrow Press, 1998

06100405 - MAJOR PROJECT

Course	Master of Science (M.Sc.)	
Type of Course	Project	
Prerequisite	-	
Course Objective	This course provides the primary window of research to each and every student. Students get acquainted with basics of research.	
	Ethics and methodology of research are also taught to students	

T	Contact Hours)			Exa	mination Scheme		
	Tutorial Lab		Theory Marks		Practical Marks	Total	
Lecture		Lab	Lab Credit	SEE	CIAs		Total Marks
-	-	16	8.00	-	-	200	200

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

C	Course Content T - Teaching Hours V		N - Weightage		
9	ŝr.	Topics	Т	w	
	1	Guidelines			

Research experience is as close to a professional problem-solving activity as anything in the curriculum. It provides exposure to research methodology and an opportunity to work closely with a faculty guide. It usually requires the use of advanced concepts, a variety of experimental techniques, and state-of-the-art instrumentation.

Research is genuine exploration of the unknown that leads to new knowledge which often warrants publication. But whether or not the results of a research project are publishable, the project should be communicated in the form of a research report written by the student.

Sufficient time should be allowed for satisfactory completion of reports, taking into account that initial drafts should be critiqued by the faculty guide and corrected by the student at each stage. The file is the principal means by which the work carried out will be assessed and therefore great care should be taken in its preparation.

In general, the File should be comprehensive and include

- A short account of the activities that were undertaken as part of the project;
- A statement about the extent to which the project has achieved its stated goals.
- A statement about the outcomes of the evaluation and dissemination processes engaged in as part of the project;
- Any activities planned but not yet completed as part of the project, or as a future initiative directly resulting from the project;
- Any problems that have arisen that may be useful to document for future reference.
- The guidelines and format for dissertation is given in 2nd Module

Dissertation Guidelines 2

Course Content T - Teaching Hours | W - Weightage

Sr. Topics T W

1. GENERAL:

The manual is intended to provide broad guidelines to the M.Sc. candidates in the preparation of the dissertation report. In general, the project report shall report, in an organised and scholarly fashion an account of original research work of the candidate leading to the discovery of new facts or techniques or correlation of facts already known.

2. NUMBER OF COPIES TO BE SUBMITTED:

Students should submit three copies to the Head of the Department concerned on or before the specified date.

3. ARRANGEMENT OF CONTENTS OF DISSERTATION:

Dissertation material should be arranged as follows:

- 1. Cover Page & Title page
- 2. Declaration
- 3. Certificate
- 4. Abstract (Hindi and English)
- 5. Acknowledgements
- 6. Table of Contents
- 7. List of Tables
- 8. List of Figures
- 9. List of Symbols, Abbreviations and Nomenclature (Optional)
- 10. Chapters
- 11. References
- 12. Appendices
- 13. One page CV

The Tables and Figures shall be introduced in the appropriate places.

4. PAGE DIMENSIONS AND MARGIN:

The dimensions of the dissertation should be standard A4 size paper may be used for preparing the copies, standard margin with 1.5 line spacing.

3 Manuscript preparation

Course Content T - Teaching Hours | **W** - Weightage Sr. Topics

The general text of thesis shall be typed in font style Times New Roman and font size 12. Same quality of the paper should be used for the preparation of the entire report/thesis; except figure, photos are shown.

1 Cover Page & Title Page - A specimen copy of the Cover page & Title page for report/thesis 2 Certificate-The Bonafide Certificate as per the format 3 Abstract: Abstract should be an essay type (HINDI and ENGLISH) of narration not exceeding 500 words outlining the research problem, the methodology used for tackling it and a summary of the findings, typed in 1.5line spacing.

4 Acknowledgements: The acknowledgements shall be brief and should not exceed onepage. The student's signature shall be made at the right bottom above his / her name typed in capitals. 5 Table of contents - The table of contents should list all material following it as wellas any material which precedes it. The title page, Bonafide Certificate and Acknowledgment will not find a place among the items listed in the Table of Contents but the page numbers in lower case Roman letters are to be accounted for them. One and a half spacing should be adopted for typing the matter under this head. A specimen copy of the Table of Contents for report / thesis is given in Annexure III.

6 List of Table - The list should use exactly the same captions as they appear above thetables in the text and the caption shall follow 'sentence case'. One and a half spacing should be adopted for typing the matter under this head.

7 List of Figures - The list should use exactly the same captions as they appear belowthe figures in the text and the caption shall follow 'sentence case'. One and a half spacing should be adopted for typing the matter under this head

8 List of Symbols, Abbreviations and Nomenclature - One and a half spacing shouldbe adopted for typing the matter under this head. Standard symbols, abbreviations etc. should be used.

9 Chapters - The chapters may include: Chapter I – Introduction

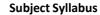
Chapter II - Literature Review

Chapter III – Materials and Methods

Chapter IV- Results and Discussion 10. Research output/outcome if any published or presented in a conference/ seminar/symposium may be included. 11. List of References - Any works of other researchers, if used either directly orindirectly, should be indicated at appropriate places in the report/thesis. The citation may assume any one of the following forms. APA Style.

APA in-text citation style uses the author's last name and the year of publication, for example: (Field, 2005). Example:Derwing, T. M., Rossiter, M. J., & Munro, M. J. (2002). Teaching native speakers to listen to foreign-accented speech. Journal of Multilingual and Multicultural Development, 23(4), 245-259.

Total


Suggested Distri					
Level	Remembrance	membrance Understanding Application		Analyze	Create
Weightage	10	30	30	15	15

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:					
CO1	Identifying appropriate research question and applying suitable research designs					
CO2	Execution of independent research experiments					

RU - RSS - M.Sc. | RU - M.Sc. - Industrial Chemistry - (2023-24) Semester: 4

CO3	Application of knowledge and skills previously gained for selected research problem					
CO4	Establishing links between theory and methods in selected area of research					
CO5	CO5 Understand and apply ethical standards of conduct in the collection and evaluation of data and other resources					

Reference Books

BIOSTATISTICS AND RESEARCH METHODOLOGY (TextBook)
 Dr. Ashok A. Hajare; Nirali Prakashan ,April, 2022

2. How to research (TextBook)

Blaxter Loraine; Viva book; 2nd, 2002

3. Research Methodology (TextBook)

C. R. Kothari; New Age International Publishers

List of Practical

06100421-CHEMICAL INDUSTRIES

Course	Master of Science (M.Sc.) Semester - 4
Type of Course	Core Course
Prerequisite	-
	To make students aware of different industrial process
Course Objective	To understand the industrial manufacturing process in dyes, pigments, intermediates, perfumes, oils To provide facilities for the development and application of fragrances
	To identify different types of natural products, their occurrence, structure, biosynthesis and properties

Т	Contact Hours)			Exa	mination Scheme				
					Theory		Marks	Practical Marks	
Lecture	Tutorial	Lab	Credit	SEE	CIA		Total Marks		
4	-	-	4.00	70	30	-	100		

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Course Content		T - Teaching Hours W -	Weig	htage	
Sr.	Topics		Т	w	
1	Dyes, Pigments	and Intermediates	15	25	
	2. b) Prepa 3. c) Meth	fication of Dyes aration of important dye intermediates ods of preparation of commercial dyes of different classes with suitable examples. Typical manufactu es of few dyes d) Fluorescent brightening agents.	ıring		
	e) Special dyes: Photosensitive dyes, dyes as food additives, natural dyes				
2	Perfumery		15	25	
	Compounds used in perfumery and their classification. Methods of preparation and importance, phenyl — ethanol. Yara yara. Ionone musk ketone, musk ambrette, musk xylene. Phenyl acetic acid and its esters, benzyl acetate, synthetic musks, jasmine. Essential oils : Source, constituents, isolation and uses. Cosmetics : Detailed study of formulations and manufacturing of cream and lotions, Lipstick and nail polish, Shampoos, hair dyes and tooth pastes.				
3	Oils, soaps and	Detergents	15	25	
	Refining of edible oils, n , Detergents, Liquid Soaps. Manufacturing of fatty Acids and glycerol, greases from fatty acids, turkey – red oil Paints, Varnishes and Inks: Constitutions, examples of preparation and applications				
4	Isolation of Nat	ural Products of commercial importance	15	25	
		Isolation of nicotine from tobacco waste, Citric from lemon grass, Neem extract and eucalyptus oil. S ucts: Mono and Sesqui – Terpenes.	ynth	esis	

RU - RSS - M.Sc. | RU - M.Sc. - Industrial Chemistry - (2023-24)

Semester: 4

Suggested Distr	ibution Of Theory				
Level	Understanding	Application	Analyze	Evaluate	Create
Weightage	20	10	30	20	20

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

Cour	Course Outcomes					
At the	At the end of this course, students will be able to:					
CO1	O1 Explain various industrial processes					
CO2	Summarize the	preparation of dyes and pigments in Dyes industry				
CO3	Justify how to m	nake perfumes, essential oils and cosmetics in industry And many more				
CO4	Formulate the b	iosynthesis, isolation of new natural products, rational structural modifications of known natural products				

Reference Books

1.	Chemical Technology: From Principles to Products, 2nd Edition (TextBook)
----	--

'Vogel's Textbook of Quantitative Chemical analysis' (TextBook)
 G. H. Jeffery, J. Bassett, J. Mendham & R. C. Denney 5/E, ELBS (English Language Book Society) Longm; 5/E, ELBS (English Language Book Society) Longman

Instrumental Methods of Chemical Analysis (TextBook)
 B.K Sharma; Krishna Prakashan Media

4. R1: - Industrial Chemistry: Being a Series of Volumes Giving a Comprehensive Survey of the Chemical Industries (TextBook)

understand the various acts

promote the creation of IPR

Course Objective

Course	Master of Science (M.Sc.)	emester - 4
Type of Course	Discipline Specific Elective Course	
Prerequisite	-	
	To make students aware of intellectual property rightsTo	

06100422-PHARMACEUTICAL INDUSTRIES AND IPR

Teaching Scheme (Contact Hours)				Exa	mination Scheme		
				Theory	Marks	Practical Marks	_
Lecture	Tutorial	Lab	Credit	SEE	CIA		Total Marks
4	-	-	4.00	70	30	-	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

To know sailent features and impact of International treatiesTo

Course Content		T - Teaching Hours W -	lours W - Weightage	
Sr.	Topics		Т	w
1	Intellectual Pro	perty Rights	15	25
	Introduction, Ty	pes of Intellectual Property Rights (Patents,		
2	Patent System		15	25

History of Indian Patent Protection, Rationale behind Patent System, Objectives and Advantages of Patent System, and future challenges. Indian Patents Act 1970, Definitions and Key Terminology, Types of Patent applications, Inventions not patentable (section 3 and 4). Patent filing procedure in India (Patent Prosecution), Specifications (Provisional and Complete), Claims- types of claims and legal importance of claims, Grant of patent, Rights of Patentee and co-owners Opposition- pregrant opposition and post-grant opposition, Anticipation, Infringement, Compulsory Licensing, revocation of patents, and power of Controller. Patent filing procedure under PCT, advantages, patent search and literature

Salient features Of National And International Patents

25

Salient features of Indian Patents (Amendments) Act 1999, 2002 and 2005. US and European Patent System, Background, Salient Features and Impact of International Treaties / Conventions like

- 1. Paris Convention, Berne convention
- 2. World Trade Organization (WTO)
- World Intellectual Property Organization (WIPO)
- Trade Related Aspects of Intellectual Property Rights (TRIPS)
- Patent Co-operation Treaty (PCT), Madrid Protocol

Patent Validation

PCT Application procedure and review procedure, National phase application procedure for US& EU, Patent prosecution procedure in US and EU, WIPO and its role in IPR, Hatch- Waxman provision for IPR Patent in validation process in India, US and Europe, IPR related to copyright, trade mark, trade secret and geographical indication, Patent application writing, Claim construction and claims.

Total	60	100

15

25

Suggested Distribution Of Theory Marks Using Bloom's Taxonomy					
Level	Understanding	Application	Analyze	Create	
Weightage	30	10	40	20	

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes	
-----------------	--

At the	At the end of this course, students will be able to:				
CO1	O1 Implement the various Acts of patent filing				
CO2	practice the Objectives and Advantages of Patent System, and future challenges.				
CO3	check Patent filing procedure under PCT, advantages, patent search and literature.				
CO4	develop innovative ideas into profit-making assets				

Reference Books			
1.	Intellectual Pro	ntellectual Property and Bioethics – An Overview Consultation Draft (TextBook)	
2.	Stocchi, E.(1990), Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK (TextBook)		
	Ellis Horwood L	td. UK	
3.	R1: - Industrial	Chemistry: Being a Series of Volumes Giving a Comprehensive Survey of the Chemical Industries (TextBook)	
4.		(1997), Riegel's Handbook of Industrial Chemistry, CBS Publishers, New Delhi) (TextBook)	
	Kent J A		

06100423-NATURAL PRODUCTS

Course	Master of Science (M.Sc.) Semester -	4					
Type of Course	Discipline Specific Elective Course						
Prerequisite	-						
Course Objective	To understand occurrence, synthesis, nomenclature and physiological actions of various biomolecules To understand the mechanism of steroid action To provide students with an introduction of different types of plant pigment						

T	Contact Hours)		Examination Scheme				
		Theory Marks		Marks	Practical Marks		
Lecture	Tutorial	Lab	Credit	SEE	CIA		Total Marks
4	-	-	4.00	70	30	-	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content				T - Teaching	Hours W	- Weig	ghtage
Sr.	Topics						Т	W
1	Terpenoids and Care	etenoids					15	25
	oc		 	 				

Classification, nomenclature, occurrence, isolation, general methods of structure determination, isoprene rule, structure determination, stereochemistry, biosynthesis and synthesis of the following representative molecules (only two): B-Carotene a-Terpeneol, Home assignment: stereochemistry, biosynthesis and synthesis of citral, Geraniol, Menthol, Farnesol, Zingiberene, Santonin, phytol, and abietic acid

2 Alkaloids | 15 | 25

Definition, nomenclature and physiological action, occurrence, isolation, general methods of strucutre elucidation, degradation, classification based on nitrogen heterocyclic ring, role of alkaloids in plants, Structure, stereochemistry, synthesis and biosynthesis of the following: Atropine, ajmaline Home assignment stereochemisry, synthesis & biosynthesis of Ephedrine, (+)- coniine, Nicotine, Quinine, Morphine, reserpine, Vinea alkaloids.

3 Steroids

Occurrence namenclature basic skeleton Diel's budresarben and steroechemistry Isolation structure determination and

Occurrence, nomenclature, basic skeleton, Diel's hydrocarbon and stereochemistry. Isolation, structure determination and synthesis of Cholesterol and Testosterone, Biosynthesis of steroids, Synthesis of Bile acids, Androsterone, Estrone, Progestrone, Aldosterone, estradiol

4 Plant Pigments 15 25

Occurrence, nomenclature and general methods of structure detrmination. Isolation and synthesis of Apigenin and Myrcetin, biosynthesis of Flavonoids: Acetate pathway and shikimic acid pathway Home assignment: structure determination. Isolation and synthesis of Luteolin, Quercetin, Quercetin-3-glucoside, Vitexin, Diadzein, Butein, Aureusin, Cyanidin-7-arabinoside, Cyanidin, Hirsutidin Porphyrins: Structure and synthesis of Haemoglobin and Chlorophyl

Total 60 100

25

Suggested Distri	Suggested Distribution Of Theory Marks Using Bloom's Taxonomy								
Level	Understanding	Analyze	Evaluate	Create					
Weightage	30	30	30	10					

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

Cour	se Outcomes						
At the end of this course, students will be able to:							
CO1	CO1 Explain the roles of caotenoids and tepenoids in biochemistry						
CO2	Justify the nome	encalture, occurrence, isolation of various alkaloids					
CO3	Justify the occu	rrence, nomenclature, and basic skeleton of steroids					
CO4	Analyse the stru	acturs, biosynthesis, ipmortance and applications of important plant and pigments planted hormones					

Reference Books

- 1. Industrial chemistry, Goel publishing house, B.K.Sharma (TextBook)
- 2. Kent, J. A. (ed) (1997), Riegel's Handbook of Industrial Chemistry, CBS Publishers, New Delhi) (TextBook)
 Kent J A
- 3. Stocchi, E.(1990), Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK (TextBook) Ellis Horwood Ltd. UK

06100424 - DISSERTATION

Course	Master of Science (M.Sc.)	Semester - 4
Type of Course	Dissertation	
Prerequisite	-	
Course Objective	This course provides the primary window of research to each and every student. Students get acquainted with basics of research.	
	Ethics and methodology of research are also taught to students	

To		Exa	mination Sch	eme				
				Theory	Marks	Practica	l Marks	
Lecture	Tutorial	Lab	Credit	SEE	CIAs	SEE	CIAs	Total Marks
-	-	24	12.00	-	-	300	-	300

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

(Course Content		T - Teaching Hours W -	Weig	ghtage
:	Sr.	Topics		Т	w
	1	Guidelines			

Research experience is as close to a professional problem-solving activity as anything in the curriculum. It provides exposure to research methodology and an opportunity to work closely with a faculty guide. It usually requires the use of advanced concepts, a variety of experimental techniques, and state-of-the-art instrumentation.

Research is genuine exploration of the unknown that leads to new knowledge which often warrants publication. But whether or not the results of a research project are publishable, the project should be communicated in the form of a research report written by the student.

Sufficient time should be allowed for satisfactory completion of reports, taking into account that initial drafts should be critiqued by the faculty guide and corrected by the student at each stage. The file is the principal means by which the work carried out will be assessed and therefore great care should be taken in its preparation.

In general, the File should be comprehensive and include

- A short account of the activities that were undertaken as part of the project;
- A statement about the extent to which the project has achieved its stated goals.
- A statement about the outcomes of the evaluation and dissemination processes engaged in as part of the project;
- Any activities planned but not yet completed as part of the project, or as a future initiative directly resulting from the project;
- Any problems that have arisen that may be useful to document for future reference.
- The guidelines and format for dissertation is given in 2nd Module

Dissertation Guidelines

Course Content

T - Teaching Hours | W - Weightage

Sr. Topics

1. GENERAL:
The manual is intended to provide broad guidelines to the M.Sc. candidates in the preparation of the dissertation report. In general, the project report shall report, in an

The manual is intended to provide broad guidelines to the M.Sc. candidates in the preparation of the dissertation report. In general, the project report shall report, in an organised and scholarly fashion an account of original research work of the candidate leading to the discovery of new facts or techniques or correlation of facts already known.

2. NUMBER OF COPIES TO BE SUBMITTED:

Students should submit three copies to the Head of the Department concerned on or before the specified date.

3. ARRANGEMENT OF CONTENTS OF DISSERTATION:

Dissertation material should be arranged as follows:

- 1. Cover Page & Title page
- 2. Declaration
- 3. Certificate
- 4. Abstract (Hindi and English)
- 5. Acknowledgements
- 6. Table of Contents
- 7. List of Tables
- 8. List of Figures
- 9. List of Symbols, Abbreviations and Nomenclature (Optional)
- 10. Chapters
- 11. References
- 12. Appendices
- 13. One page CV

The Tables and Figures shall be introduced in the appropriate places.

4. PAGE DIMENSIONS AND MARGIN:

The dimensions of the dissertation should be standard A4 size paper may be used for preparing the copies, standard margin with 1.5 line spacing.

3 Manuscript Preparation

Semester. 4

Course Content T - Teaching Hours | W - Weightage Sr. Topics T W

The general text of thesis shall be typed in font style Times New Roman and font size 12. Same quality of the paper should be used for the preparation of the entire report/thesis; except figure, photos are shown.

1 Cover Page & Title Page - A specimen copy of the Cover page & Title page for report/thesis 2 Certificate-The Bonafide Certificate as per the format 3 Abstract: Abstract should be an essay type (HINDI and ENGLISH) of narration not exceeding 500 words outlining the research problem, the methodology used for tackling it and a summary of the findings, typed in 1.5line spacing.

4 Acknowledgements: The acknowledgements shall be brief and should not exceed onepage. The student's signature shall be made at the right bottom above his / her name typed in capitals. 5 Table of contents - The table of contents should list all material following it as wellas any material which precedes it. The title page, Bonafide Certificate and Acknowledgment will not find a place among the items listed in the Table of Contents but the page numbers in lower case Roman letters are to be accounted for them. One and a half spacing should be adopted for typing

Roman letters are to be accounted for them. One and a half spacing should be adopted for typing the matter under this head. A specimen copy of the Table of Contents for report / thesis is given in Annexure III.

6 List of Table - The list should use exactly the same captions as they appear above thetables in the text and the caption shall follow 'sentence case'. One and a half spacing should be adopted for typing the matter under this head.

7 List of Figures - The list should use exactly the same captions as they appear belowthe figures in the text and the caption shall follow 'sentence case'. One and a half spacing should be adopted for typing the matter under this head

8 List of Symbols, Abbreviations and Nomenclature - One and a half spacing shouldbe adopted for typing the matter under this head. Standard symbols, abbreviations etc. should be used.

9 Chapters - The chapters may include: Chapter I – Introduction

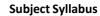
Chapter II - Literature Review

Chapter III – Materials and Methods

Chapter IV- Results and Discussion 10. Research output/outcome if any published or presented in a conference/ seminar/symposium may be included. 11. List of References - Any works of other researchers, if used either directly orindirectly, should be indicated at appropriate places in the report/thesis. The citation may assume any one of the following forms. APA Style.

APA in-text citation style uses the author's last name and the year of publication, for example:(Field, 2005). Example:Derwing, T. M., Rossiter, M. J., & Munro, M. J. (2002). Teaching native speakers to listen to foreign-accented speech. Journal of Multilingual and Multicultural Development, 23(4), 245-259.

Total


Suggested Distribution Of Theory Marks Using Bloom's Taxonomy Level Remembrance Understanding Application Analyze Evaluate Create Weightage 10 20 30 20 10 10

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:							
CO1	Identifying appropriate research question and applying suitable research designs							
CO2	Execution of independent research experiments							



RU - RSS - M.Sc. | RU - M.Sc. - Industrial Chemistry - (2023-24)

Semester: 4

CC	23	Application of knowledge and skills previously gained for selected research problem
CC) 4	Establishing links between theory and methods in selected area of research
CC) 5	Understand and apply ethical standards of conduct in the collection and evaluation of data and other resources

 \mbox{RU} - \mbox{RSS} - $\mbox{M.Sc.}$ | \mbox{RU} - $\mbox{M.Sc.}$ - $\mbox{Analytical Chemistry}$ - (2023-24)

Semester: 4

Reference Books

- 1. BIOSTATISTICS AND RESEARCH METHODOLOGY (TextBook)
 - Dr. Ashok A. Hajare; Nirali Prakashan ,April, 2022
- 2. How to research (TextBook)

Blaxter Loraine; Viva book; 2nd, 2002

- 3. Research Methodology (TextBook)
 - C. R. Kothari; New Age International Publishers

List of Practical

06100411-ANALYTICAL CHEMISTRY-VII

Course	Master of Science (M.Sc.)	Semester - 4				
Type of Course	Discipline Specific Elective Course					
Prerequisite -						
Course Objective	 Be able to use a test chromatogram to determine the status and quality of the system To obtain a good overview of the HPLC components, the properties of the types of inject detectors, the mobile phases and the most common of the HPLC column To determine the hyperfine parameters, recoil energy, quadrupole splitting and chemic shift by using Mossbauer spectroscopy The goal of the course is expanding the theoretical and practical knowledge and understield of chromatography 	al shift / isomer				

T	Examination Scheme							
				SEE		Practica	l Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIAs			Total Marks
4	-	-	4.00	70	30	-	-	100

 $\textbf{\textit{SEE}} - Semester \ End \ Examination, \textbf{\textit{CIA}} - Continuous \ Internal \ Assessment \ (It \ consists \ of \ Assignments/Seminars/Presentations/MCQ \ Tests, \ etc.)$

Cou	rse Content	T - Teaching Hours W -	Weig	ghtag
Sr.	Topics		Т	w
1	UHPLC		12	23
	Principle, theor	ry, instrumentation and applications of ultrahigh performance liquid chromatography (UHPLC) and th HPLC.		
2	SFC		9	25
	Principle, theor	ry, instrumentation and applications of supercritical fluid chromatography (SFC). Comparison with HPI	C	
3	LC-NMR		9	25
	Principle, theor	ry, instrumentation and applications of liquid Chromatography –nuclear magnetic resonance (LC-NM th NMR.	R) ar	nd
4	LC-MS		15	25
		chromatography, Types of chromatography, Principle of separation: Adsorption, Size exclusion, Ion ity, mode of chromatography	exch	ange,
		Total	45	98

Suggested Distri				
Level	Analyze	Create		
Weightage	25	25	25	25

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Cour	se Outcomes						
At the	At the end of this course, students will be able to:						
CO1	O1 Understand the importance and notice the difference between different modes of chromatographic separation						
CO2	Construct splitt structure	ing diagrams and be able to measure coupling constants an NMR spectrum, or predict coupling constants and					
CO3	Apply mass spe	ctroscopy (exact mass, and fragmentation patterns) to organic structural analysis					
CO4	Clearly and acc	urately analyze and interpret the results of chromatographic analysis					

CO4	Clearly and accurately analyze and interpret the results of chromatographic analysis
Refe	erence Books
1.	Chromatography: Concepts and Contrasts Author(s): James M. Miller (TextBook) James M. Miller
2.	Analytical chemistry principles (TextBook) John H. Kennedy; Saunders College Pub.,
3.	Analytical Chemistry Gary D. Christian John Wiley and Sons Inc. (TextBook) Gary D. Christian

06100412-ANALYTICAL CHEMISTRY-VIII

Course	Master of Science (M.Sc.)	Semester - 4
Type of Course Discipline Specific Elective Course		
Prerequisite	-	
Course Objective	 To understand the theoretical and practical knowledge and understanding in the field of chromatography, as one of the most modern analytical separation techniques To provide the Knowledgeable of current electro analytical techniques To identify the most appropriate electro analytical technique for a specific analysis To use basic principles of thermodynamics to solve thermal problem 	

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
			Theory Marks Practical Marks		Total		
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Marks
4	-	-	4.00	70	30		100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Weig	ghtage
Sr.	Topics		Т	w
1	Specialized Chr	omatographic Techniques	15	30
	Flash/ ICE, Cour	nter Current Chromatography		
2	Extraction Tech	niques	9	30
	Sample prepara	ation techniques (Working, Methodology and Applications) LLE, SPE, SPME, Protein precipitation		
3	Electro Analyti	cal Techniques	12	20
	Chemiluminisco	ence , Flourescence , Phosphorescence		
4	Thermal Metho	ods of Analysis	9	20
	Principle, theor	y, instrumentation and applications of TGA, DTA, DSC		1
	1	Total	45	100

Suggested Distri	ibution Of SEE Usi				
Level	Remembrance	Understanding	Application	Analyze	Evaluate
Weightage	20	20	20	20	20

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:					
CO1	Understand the significance of course content for thermo-fluid problems					
CO2	Demonstrate the independence of the appropriate optimization of chromatographic systems					
CO3	The students will be able to describe the common methods of spectroscopic and chromatographic analysis, and discuss how they can be applied to pharmaceuticals					

RU - RSS - M.Sc. | RU - M.Sc. - Analytical Chemistry - (2023-24)

Semester: 4

Refe	erence Books	
1.	-	nistry principles (TextBook) ly; Saunders College Pub.,
2.	-	nistry principles (TextBook) ly; Saunders College Pub.,
3.	Analytical Cher Gary D. Christia	nistry Gary D. Christian John Wiley and Sons Inc. (TextBook) n

06100413-ANALYTICAL CHEMISTRY-IX

Course	Master of Science (M.Sc.)	Semester - 4
Type of Course	Core Course	
Prerequisite	-	
Course Objective	To perform qualitative and quantitative analysis To understand the factors influencing chromatographic separation. To provide knowledge in the discipline of clinical chemistry To provide knowledge on the specificities of sampling and preparing biological samples, as methods of bioanalytical chemistry	well as about

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory Marks		Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Marks
4	-	-	4.00	70	30	-	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Wei	ghtage
Sr.	Topics		Т	w
1	Automation ar	nd Flow injection analysis	15	30
	•	utomation, automatic and automated devices, Process control: off-line, at-line and on-line analysis. Conalyzers, feedback mechanism. Flow injection analysis, Applications of FIA, stopped flow measurements		
2	Clinical Chemis	stry	9	25
	·	f blood, collection and preservation of samples, common determinations- serum electrolytes, blood rogen, uric acid. Principles of immunoassays, radioimmunoassay, fluorescence immunoassay, enzym	_	se,
3	Bioanlytical Ch	nemistry	12	25
	Bioanalytical m	f bioanalytical methodology: extraction from biological matrices, chromatography and detection sys- nethod validation parameters: sensitivity, selectivity, accuracy and precision, linearity (calibration cu ix effect and stability. USFDA guidelines for bioanalytical method validation and the acceptance crite	irves	
4	Electrogravime	etry and coulometry	9	20
		lectrogravimetric analysis, types of electrogravimetric method: constant current electrolysis, constant constant current electrolysis, constant currer rolysis, coulometry, types of coulometric methods: controlled potential coulometry, constant currer		1
	1	Total	45	100

Suggested Distribution Of SEE Using Bloom's Taxonomy							
Level Remembrance Understanding Application Analy							
Weightage	/eightage 10 40 20 3						

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

COU Define and explain the theory underpinning chromatography

CO2 Able to identify and explain the factors influencing chromatographic separation in terms of resolution and specificity

CO3 Identify the factors influencing different sample injection techniques and be able to discuss the advantages and disadvantages of each type

CO4 Identify the factors influencing different analyze detection systems and be able to discuss the advantages and disadvantages of each type

CO5 Develop an understanding of the range and uses of analytical methods in chemistry

Reference Books

Analytical Chemistry Gary D. Christian John Wiley and Sons Inc. (TextBook)
 Gary D. Christian

 Analytical chemistry principles (TextBook)
 John H. Kennedy; Saunders College Pub.,

AN UNIVERSITY OF THE PROPERTY OF THE PROPERTY

06100414-ANALYTICAL CHEMISTRY-X

Course	Master of Science (M.Sc.)	Semester - 4					
Type of Course	Core						
Prerequisite	-						
Course Objective	 Upon completion of this program the student will have fundamental knowledge in p conventional dosage forms To provide the basic knowledge of very important concepts of the Analytical chemist 						
	To understand the very important concept of Nanotechnology	·· / ·					
	• To provide the basic knowledge for food analysis.						

Teaching Scheme (Contact Hours)					Exa	mination Scheme		
				Theory Marks		Practical Marks	Total	
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Total Marks	
4	-	-	4.00	70	30	-	100	

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	rse Content	T - Teaching Hours W -	Wei	ghtage
Sr.	Topics		Т	W
1	Pharmaceutica	Analysis	9	20
		nd titrimetric assays for anti-diabetic, anti-cancer, anti-tuberculosis, anti- malarial, anti-hypertensive d on USP/BP/IP. Heavy metal ion, Dissolution, Loss on drying and Karl fisher analysis in pharmaceuti		anti-
2	Introduction A	nd Classification Of Nanotechnology	15	30
	– ball milling; B	ry, Classification of Nanostructured materials – Nanoscale Architecture. Synthesis of Nanomaterials: Tottom up – co-precipitaion – sol-gel – electrodeposition – using natural nanoparticles. The Carbon Natural nanoparticles. The Carbon Natural nanoparticles – Uses for nanotubes – Biological Applications	•	
3	Analysis of pes	ticides, soaps and detergents, fertilizers	12	25
	detergents witl	f pesticides. Analysis of different pesticides by classical and instrumental methods. Classification of s n suitable examples. Characterization of soaps and detergents. Types of fertilizers and analysis of dif nitrogen, phosphates, calcium, sodium, potassium and ammonia.	-	
4	Food Analysis		9	25
	and sample pre	food analysis, regulations and international standards related to food analysis, nutritional labeling, sparation, compositional analysis of foods for moisture, proteins, fat, fiber, ash, vitamins and mineral fats and oils; milk and milk products.		ile
	•	Total	45	100

Suggested Distribution Of SEE Using Bloom's Taxonomy								
Level	Understanding	Application	Analyze	Evaluate				
Weightage	25	25	25	25				

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course	Outcomes
Course	Outcomes

Cour	e outcomes						
At the	At the end of this course, students will be able to:						
CO1	This study is useful to furnish students with the advanced technical skills and knowledge base that is required in the field of instrumental analysis and which will enable them to pursue careers as analysts in the chemical and/or pharmaceutical industry						
CO2	Understand the essential concepts used in nanotechnology, syntheses and fabrication						
CO3	Appreciate the development of modern nanotechnology						
CO4	Understand, identify and analyze a problem related to food industry and ability to find an appropriate solution for the same						

Reference Books

1.	Analytical chemistry principles (TextBook) John H. Kennedy; Saunders College Pub.,
2.	Analytical chemistry principles (TextBook) John H. Kennedy; Saunders College Pub.,
3.	Analytical Chemistry Gary D. Christian John Wiley and Sons Inc. (TextBook) Gary D. Christian

06100415 - MAJOR PROJECT

Course	Master of Science (M.Sc.)	Semester - 4
Type of Course	Project	
Prerequisite	-	
Course Objective	This course provides the primary window of research to each and every student. Students get acquainted with basics of research. Ethics and methodology of research are also taught to students	

Teaching Scheme (Contact Hours)					Exa	mination Scheme	
				Theory	Marks	Practical Marks	Total
Lecture	Tutorial	Lab	Credit	SEE	CIAs		Total Marks
-	-	16	8.00	-	-	200	200

SEE - Semester End Examination, **CIA** - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Course Content T - Teaching Hours W - Weightag						
Sr.	Topics		Т	w		
1	Guidelines					
	Research experience is as close to a professional problem-solving activity as anything in the curriculum. It provides exposure research methodology and an opportunity to work closely with a faculty guide. It usually requires the use of advanced concept a variety of experimental techniques, and state-of-the-art instrumentation. Research is genuine exploration of the unknown that leads to new knowledge which often warrants publication. But whether not the results of a research project are publishable, the project should be communicated in the form of a research repowritten by the student. Sufficient time should be allowed for satisfactory completion of reports, taking into account that initial drafts should be critique by the faculty guide and corrected by the student at each stage. The file is the principal means by which the work carried owill be assessed and therefore great care should be taken in its preparation. In general, the File should be comprehensive and include A short account of the activities that were undertaken as part of the project; A statement about the extent to which the project has achieved its stated goals. A statement about the outcomes of the evaluation and dissemination processes engaged in as part of the project; Any activities planned but not yet completed as part of the project, or as a future initiative directly resulting from the project Any problems that have arisen that may be useful to document for future reference. The guidelines and format for dissertation is given in 2nd Module					
2	Dissertation Gu	uidelines				
Cou	rse Content	T - Teaching Hours W -	Wei	thtage		
Sr.	Topics		Т	W		

1. GENERAL:

The manual is intended to provide broad guidelines to the M.Sc. candidates in the preparation of the dissertation report. In general, the project report shall report, in an organised and scholarly fashion an account of original research work of the candidate leading to the discovery of new facts or techniques or correlation of facts already known.

2. NUMBER OF COPIES TO BE SUBMITTED:

Students should submit three copies to the Head of the Department concerned on or before the specified date.

3. ARRANGEMENT OF CONTENTS OF DISSERTATION:

Dissertation material should be arranged as follows:

- 1. Cover Page & Title page
- 2. Declaration
- 3. Certificate
- 4. Abstract (Hindi and English)
- 5. Acknowledgements
- 6. Table of Contents
- 7. List of Tables
- 8. List of Figures
- 9. List of Symbols, Abbreviations and Nomenclature (Optional)
- 10. Chapters
- 11. References
- 12. Appendices
- 13. One page CV

The Tables and Figures shall be introduced in the appropriate places.

4. PAGE DIMENSIONS AND MARGIN:

The dimensions of the dissertation should be standard A4 size paper may be used for preparing the copies, standard margin with 1.5 line spacing.

3 Manuscript preparation

Course Content		se Content	T - Teaching Hours W - V	Veig	ghtage
	Sr.	Topics	Т	. ,	W

The general text of thesis shall be typed in font style Times New Roman and font size 12. Same quality of the paper should be used for the preparation of the entire report/thesis; except figure, photos are shown.

1 Cover Page & Title Page - A specimen copy of the Cover page & Title page for report/thesis 2 Certificate-The Bonafide Certificate as per the format 3 Abstract: Abstract should be an essay type (HINDI and ENGLISH) of narration not exceeding 500 words outlining the research problem, the methodology used for tackling it and a summary of the findings, typed in 1.5line spacing.

4 Acknowledgements: The acknowledgements shall be brief and should not exceed onepage. The student's signature shall be made at the right bottom above his / her name typed in capitals. 5 Table of contents - The table of contents should list all material following it as wellas any material which precedes it. The title page, Bonafide Certificate and Acknowledgment will not find a place among the items listed in the Table of Contents but the page numbers in lower case

Roman letters are to be accounted for them. One and a half spacing should be adopted for typing the matter under this head.

A specimen copy of the Table of Contents for report / thesis is given in Annexure III.

6 List of Table - The list should use exactly the same captions as they appear above thetables in the text and the caption shall follow 'sentence case'. One and a half spacing should be adopted for typing the matter under this head.

7 List of Figures - The list should use exactly the same captions as they appear belowthe figures in the text and the caption shall follow 'sentence case'. One and a half spacing should be adopted for typing the matter under this head

8 List of Symbols, Abbreviations and Nomenclature - One and a half spacing shouldbe adopted for typing the matter under this head. Standard symbols, abbreviations etc. should be used.

9 Chapters - The chapters may include: Chapter I – Introduction Chapter II - Literature Review

Chapter III –Materials and Methods

Chapter IV- Results and Discussion 10. Research output/outcome if any published or presented in a conference/seminar/symposium may be included. 11. List of References - Any works of other researchers, if used either directly orindirectly, should be indicated at appropriate places in the report/thesis. The citation may assume any one of the following forms. APA Style.

APA in-text citation style uses the author's last name and the year of publication, for example:(Field, 2005). Example:Derwing, T. M., Rossiter, M. J., & Munro, M. J. (2002). Teaching native speakers to listen to foreign-accented speech. Journal of Multilingual and Multicultural Development, 23(4), 245-259.

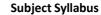
Total	

Suggested Distribution Of SEE Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	10	30	30	10	10	10

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the end of this course, students will be able to:



RU - RSS - M.Sc. | RU - M.Sc. - Analytical Chemistry - (2023-24) Semester: 4

CO1	Identifying appropriate research question and applying suitable research designs			
CO2	Execution of independent research experiments			
CO3	Application of knowledge and skills previously gained for selected research problem			
CO4	Establishing links between theory and methods in selected area of research			
CO5	Understand and apply ethical standards of conduct in the collection and evaluation of data and other resources			

 \mbox{RU} - \mbox{RSS} - $\mbox{M.Sc.}$ | \mbox{RU} - $\mbox{M.Sc.}$ - $\mbox{Analytical Chemistry}$ - (2023-24)

Semester: 4

Reference Books

BIOSTATISTICS AND RESEARCH METHODOLOGY (TextBook)
 Dr. Ashok A. Hajare; Nirali Prakashan ,April, 2022

2. How to research (TextBook)

Blaxter Loraine; Viva book; 2nd, 2002

List of Practical

